
Neural Network Architectures
Neil Gong

Slides adapted from Kaiming He and Sergey Levine

Artificial Neural Networks

• Input/output
• Weight
• Activation function
• Connection pattern

Activation function

Source: Wikipedia

Connection patterns

• Fully connected
• Softmax
• Convolution
• Residual
• Transformer

Credit: Kaiming He

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1 1 2 1

0 0 0

-1 -2 -1

-3

• sliding window
• dot product

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

1 2 1

0 0 0

-1 -2 -1

-3 -4

• sliding window
• dot product

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

1 2 1

0 0 0

-1 -2 -1

-3 -4 -4

• sliding window
• dot product

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

1 2 1

0 0 0

-1 -2 -1

-3 -4 -4 -4

• sliding window
• dot product

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

1 2 1

0 0 0

-1 -2 -1

-3 -4 -4 -4 -4 -3

-3 -4 -4 -3 -1 0

0 0 0 0 0 0

2 1 0 1 3 3

2 1 0 1 3 3

1 3 4 3 1 0• sliding window
• dot product

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: a 2-D example

![#,%] = (
!"#$

$
(
%"#$

$
)[*, +],[# + *,% + +]

filter weights

!: kernel radius
kernel size = 2! + 1

input map coordinates in
a local window

output map

* In ConvNets, convolution is often implemented as cross-correlation (no flipping)

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: Multi-channel inputs

∗ =

window:
Ci × Kh × Kw

filter:
Ci × Kh × Kw

0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0

Convolution: padding
input: 8 × 8, + pad

output: H × W = 8 × 8

filter

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: Multi-channel inputs

∗ =

window:
Ci × Kh × Kw

filter:
Ci × Kh × Kw

o

Convolution: stride
input

output

filter
o

stride = 2

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: Multi-channel inputs

∗ =

window:
Ci × Kh × Kw

filter:
Ci × Kh × Kw

o

Convolution: stride
input

output

filter
o

stride = 2

o o

Convolution: stride
input

output

filter
o o

stride = 2

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: Multi-channel inputs

∗ =

window:
Ci × Kh × Kw

filter:
Ci × Kh × Kw

o o o o

o o o o

o o o o

o o o o

Convolution: stride
input: H × W = 8 × 8

output: H × W = 4 × 4

filter
o o o o

o o o o

o o o o

o o o o

stride = 2

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: Multi-channel inputs

∗ =

window:
Ci × Kh × Kw

filter:
Ci × Kh × Kw

o

Convolution: stride
input

output

filter
o

stride = 2

Convolution: stride
input: H × W = 8 × 8

output: H × W = 4 × 4

filter
o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

stride = 2

• reduces feature map size
• compress and abstract

Hout = ⌊(Hin + 2padh– Kh) / str⌋+ 1

*rounding operation depends on libraries

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: Multi-channel inputs

∗ =

window:
Ci × Kh × Kw

filter:
Ci × Kh × Kw

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: Multi-channel outputs

1 2 1

0 0 0

-1 -2 -1

1 0 -1

2 0 -2

1 0 -1

one filter, one feature

∗ =

∗ =

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: Multi-channel inputs

∗ =

window:
Ci × Kh × Kw

filter:
Ci × Kh × Kw

Ci × Hi × Wi:
3 × 64 × 64

Co × Ho × Wo:
16 × 64 × 64

Co × Ci × Kh × Kw:
16 × 3 × 3 × 3

Convolution: tensor views
• Tensor: high-dimension array

• feature maps
• 3-D tensor: C × H × W
• C: channels
• H: height
• W: width

• filters
• 4-D tensor: Co × Ci × Kh × Kw
• Co: output channels
• Ci: input channels
• Kh, Kw: filter height, width

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: Multi-channel inputs

∗ =

window:
Ci × Kh × Kw

filter:
Ci × Kh × Kw

Composing basic operations

conv
3×3, 16

conv
3×3, 16

conv
3×3, 16

conv
3×3, 16

these are activations (features, embeddings, tensors …)

these are operations (functions, transforms, layers …)

two ways of showing
neural nets

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: Multi-channel inputs

∗ =

window:
Ci × Kh × Kw

filter:
Ci × Kh × Kw

Composing basic operations

conv
3×3, 16

conv
3×3, 16

conv
3×3, 16

conv
3×3, 16

these are activations (features, embeddings, tensors …)

these are operations (functions, transforms, layers …)

two ways of showing
neural netsThe degradation problem

• Good init + norm enable training deeper models
• Simply stacking more layers?

• Degrade after ∼20 layers
• Not overfitting
• Difficult to train

hope

reality
ac
cu
ra
cy

depth

10-layer

20-layer

Deep Residual Learning
• Deep Learning gets way deeper
• simple component: identity shortcut
• enable networks w/ hundreds of layers

Compose simple modules into complex functions

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015, CVPR 2016.

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: Multi-channel inputs

∗ =

window:
Ci × Kh × Kw

filter:
Ci × Kh × Kw

Composing basic operations

conv
3×3, 16

conv
3×3, 16

conv
3×3, 16

conv
3×3, 16

these are activations (features, embeddings, tensors …)

these are operations (functions, transforms, layers …)

two ways of showing
neural netsDeep Residual Learning

classical network
• F % : desired function to be fit by

a subnet

• let weight layers fit F(%)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015, CVPR 2016.

a subnet in
a deep net %

F(%)

weight layer

weight layer

relu

relu

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: Multi-channel inputs

∗ =

window:
Ci × Kh × Kw

filter:
Ci × Kh × Kw

Composing basic operations

conv
3×3, 16

conv
3×3, 16

conv
3×3, 16

conv
3×3, 16

these are activations (features, embeddings, tensors …)

these are operations (functions, transforms, layers …)

two ways of showing
neural netsDeep Residual Learning

residual block
• F % : desired function to be fit by

a subnet

• let weight layers fit F(%)
• let weight layers fit G %

• set F % = G % + %

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015, CVPR 2016.

a subnet in
a deep net

weight layer

weight layer

relu

relu

%

F % = G % + %

identityG(%)

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: Multi-channel inputs

∗ =

window:
Ci × Kh × Kw

filter:
Ci × Kh × Kw

Composing basic operations

conv
3×3, 16

conv
3×3, 16

conv
3×3, 16

conv
3×3, 16

these are activations (features, embeddings, tensors …)

these are operations (functions, transforms, layers …)

two ways of showing
neural netsDeep Residual Learning

residual block
• G % : residual function

• if F % = identity is near-optimal
• push weights to small
• encourage small changes

• initialization
• small or zero weights

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015, CVPR 2016.

a subnet in
a deep net

weight layer

weight layer

relu

relu

%

F % = G % + %

identityG(%)

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: Multi-channel inputs

∗ =

window:
Ci × Kh × Kw

filter:
Ci × Kh × Kw

Composing basic operations

conv
3×3, 16

conv
3×3, 16

conv
3×3, 16

conv
3×3, 16

these are activations (features, embeddings, tensors …)

these are operations (functions, transforms, layers …)

two ways of showing
neural netsResidual Networks (ResNet)

Building very deep nets:
• add identity connections to vanilla nets

(a.k.a. skip/shortcut/residual connections)
or:
• stack many residual blocks

Residual Blocks:
• new generic modules for neural nets
• design blocks and compose them

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015, CVPR 2016.

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: Multi-channel inputs

∗ =

window:
Ci × Kh × Kw

filter:
Ci × Kh × Kw

Composing basic operations

conv
3×3, 16

conv
3×3, 16

conv
3×3, 16

conv
3×3, 16

these are activations (features, embeddings, tensors …)

these are operations (functions, transforms, layers …)

two ways of showing
neural nets

“Attention is all you need”, Vaswani, et al., 2017

A Transformer Block has two Residual Blocks.

Residual Block: Transformer

Scaled Dot-Product Attention

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Multi-Head Attention

output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. With a single attention head, averaging inhibits this.

MultiHead(Q,K, V) = Concat(head1, ..., headh)W
O

where headi = Attention(QW
Q

i
,KW

K

i
, V W

V

i
)

Where the projections are parameter matrices WQ

i
2 Rdmodel⇥dk , WK

i
2 Rdmodel⇥dk , WV

i
2 Rdmodel⇥dv

and W
O 2 Rhdv⇥dmodel .

In this work we employ h = 8 parallel attention layers, or heads. For each of these we use
dk = dv = dmodel/h = 64. Due to the reduced dimension of each head, the total computational cost
is similar to that of single-head attention with full dimensionality.

3.2.3 Applications of Attention in our Model

The Transformer uses multi-head attention in three different ways:

• In "encoder-decoder attention" layers, the queries come from the previous decoder layer,
and the memory keys and values come from the output of the encoder. This allows every
position in the decoder to attend over all positions in the input sequence. This mimics the
typical encoder-decoder attention mechanisms in sequence-to-sequence models such as
[38, 2, 9].

• The encoder contains self-attention layers. In a self-attention layer all of the keys, values
and queries come from the same place, in this case, the output of the previous layer in the
encoder. Each position in the encoder can attend to all positions in the previous layer of the
encoder.

• Similarly, self-attention layers in the decoder allow each position in the decoder to attend to
all positions in the decoder up to and including that position. We need to prevent leftward
information flow in the decoder to preserve the auto-regressive property. We implement this
inside of scaled dot-product attention by masking out (setting to �1) all values in the input
of the softmax which correspond to illegal connections. See Figure 2.

3.3 Position-wise Feed-Forward Networks

In addition to attention sub-layers, each of the layers in our encoder and decoder contains a fully
connected feed-forward network, which is applied to each position separately and identically. This
consists of two linear transformations with a ReLU activation in between.

FFN(x) = max(0, xW1 + b1)W2 + b2 (2)

While the linear transformations are the same across different positions, they use different parameters
from layer to layer. Another way of describing this is as two convolutions with kernel size 1.
The dimensionality of input and output is dmodel = 512, and the inner-layer has dimensionality
dff = 2048.

3.4 Embeddings and Softmax

Similarly to other sequence transduction models, we use learned embeddings to convert the input
tokens and output tokens to vectors of dimension dmodel. We also use the usual learned linear transfor-
mation and softmax function to convert the decoder output to predicted next-token probabilities. In
our model, we share the same weight matrix between the two embedding layers and the pre-softmax
linear transformation, similar to [30]. In the embedding layers, we multiply those weights by

p
dmodel.

5

output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. With a single attention head, averaging inhibits this.

MultiHead(Q,K, V) = Concat(head1, ..., headh)W
O

where headi = Attention(QW
Q

i
,KW

K

i
, V W

V

i
)

Where the projections are parameter matrices WQ

i
2 Rdmodel⇥dk , WK

i
2 Rdmodel⇥dk , WV

i
2 Rdmodel⇥dv

and W
O 2 Rhdv⇥dmodel .

In this work we employ h = 8 parallel attention layers, or heads. For each of these we use
dk = dv = dmodel/h = 64. Due to the reduced dimension of each head, the total computational cost
is similar to that of single-head attention with full dimensionality.

3.2.3 Applications of Attention in our Model

The Transformer uses multi-head attention in three different ways:

• In "encoder-decoder attention" layers, the queries come from the previous decoder layer,
and the memory keys and values come from the output of the encoder. This allows every
position in the decoder to attend over all positions in the input sequence. This mimics the
typical encoder-decoder attention mechanisms in sequence-to-sequence models such as
[38, 2, 9].

• The encoder contains self-attention layers. In a self-attention layer all of the keys, values
and queries come from the same place, in this case, the output of the previous layer in the
encoder. Each position in the encoder can attend to all positions in the previous layer of the
encoder.

• Similarly, self-attention layers in the decoder allow each position in the decoder to attend to
all positions in the decoder up to and including that position. We need to prevent leftward
information flow in the decoder to preserve the auto-regressive property. We implement this
inside of scaled dot-product attention by masking out (setting to �1) all values in the input
of the softmax which correspond to illegal connections. See Figure 2.

3.3 Position-wise Feed-Forward Networks

In addition to attention sub-layers, each of the layers in our encoder and decoder contains a fully
connected feed-forward network, which is applied to each position separately and identically. This
consists of two linear transformations with a ReLU activation in between.

FFN(x) = max(0, xW1 + b1)W2 + b2 (2)

While the linear transformations are the same across different positions, they use different parameters
from layer to layer. Another way of describing this is as two convolutions with kernel size 1.
The dimensionality of input and output is dmodel = 512, and the inner-layer has dimensionality
dff = 2048.

3.4 Embeddings and Softmax

Similarly to other sequence transduction models, we use learned embeddings to convert the input
tokens and output tokens to vectors of dimension dmodel. We also use the usual learned linear transfor-
mation and softmax function to convert the decoder output to predicted next-token probabilities. In
our model, we share the same weight matrix between the two embedding layers and the pre-softmax
linear transformation, similar to [30]. In the embedding layers, we multiply those weights by

p
dmodel.

5

Position-wise feed-forward network

output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. With a single attention head, averaging inhibits this.

MultiHead(Q,K, V) = Concat(head1, ..., headh)W
O

where headi = Attention(QW
Q

i
,KW

K

i
, V W

V

i
)

Where the projections are parameter matrices WQ

i
2 Rdmodel⇥dk , WK

i
2 Rdmodel⇥dk , WV

i
2 Rdmodel⇥dv

and W
O 2 Rhdv⇥dmodel .

In this work we employ h = 8 parallel attention layers, or heads. For each of these we use
dk = dv = dmodel/h = 64. Due to the reduced dimension of each head, the total computational cost
is similar to that of single-head attention with full dimensionality.

3.2.3 Applications of Attention in our Model

The Transformer uses multi-head attention in three different ways:

• In "encoder-decoder attention" layers, the queries come from the previous decoder layer,
and the memory keys and values come from the output of the encoder. This allows every
position in the decoder to attend over all positions in the input sequence. This mimics the
typical encoder-decoder attention mechanisms in sequence-to-sequence models such as
[38, 2, 9].

• The encoder contains self-attention layers. In a self-attention layer all of the keys, values
and queries come from the same place, in this case, the output of the previous layer in the
encoder. Each position in the encoder can attend to all positions in the previous layer of the
encoder.

• Similarly, self-attention layers in the decoder allow each position in the decoder to attend to
all positions in the decoder up to and including that position. We need to prevent leftward
information flow in the decoder to preserve the auto-regressive property. We implement this
inside of scaled dot-product attention by masking out (setting to �1) all values in the input
of the softmax which correspond to illegal connections. See Figure 2.

3.3 Position-wise Feed-Forward Networks

In addition to attention sub-layers, each of the layers in our encoder and decoder contains a fully
connected feed-forward network, which is applied to each position separately and identically. This
consists of two linear transformations with a ReLU activation in between.

FFN(x) = max(0, xW1 + b1)W2 + b2 (2)

While the linear transformations are the same across different positions, they use different parameters
from layer to layer. Another way of describing this is as two convolutions with kernel size 1.
The dimensionality of input and output is dmodel = 512, and the inner-layer has dimensionality
dff = 2048.

3.4 Embeddings and Softmax

Similarly to other sequence transduction models, we use learned embeddings to convert the input
tokens and output tokens to vectors of dimension dmodel. We also use the usual learned linear transfor-
mation and softmax function to convert the decoder output to predicted next-token probabilities. In
our model, we share the same weight matrix between the two embedding layers and the pre-softmax
linear transformation, similar to [30]. In the embedding layers, we multiply those weights by

p
dmodel.

5

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: Multi-channel inputs

∗ =

window:
Ci × Kh × Kw

filter:
Ci × Kh × Kw

Composing basic operations

conv
3×3, 16

conv
3×3, 16

conv
3×3, 16

conv
3×3, 16

these are activations (features, embeddings, tensors …)

these are operations (functions, transforms, layers …)

two ways of showing
neural nets

“Attention is all you need”, Vaswani, et al., 2017

A Transformer Block has two Residual Blocks.

Residual Block: TransformerOne last detail: layer normalization
Main idea: batch normalization is very helpful, but hard to use with sequence models

Sequences are different lengths, makes normalizing across the batch hard
Sequences can be very long, so we sometimes have small batches

Simple solution: “layer normalization” – like batch norm, but not across the batch
Batch norm Layer norm

Transformer architecture

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: Multi-channel inputs

∗ =

window:
Ci × Kh × Kw

filter:
Ci × Kh × Kw

Composing basic operations

conv
3×3, 16

conv
3×3, 16

conv
3×3, 16

conv
3×3, 16

these are activations (features, embeddings, tensors …)

these are operations (functions, transforms, layers …)

two ways of showing
neural nets

“Attention is all you need”, Vaswani, et al., 2017

A Transformer Block has two Residual Blocks.

Residual Block: TransformerOne last detail: layer normalization
Main idea: batch normalization is very helpful, but hard to use with sequence models

Sequences are different lengths, makes normalizing across the batch hard
Sequences can be very long, so we sometimes have small batches

Simple solution: “layer normalization” – like batch norm, but not across the batch
Batch norm Layer norm

Positional encoding: sin/cos

This is not a great idea, because absolute position is less important than relative position

I walk my dog every day every single day I walk my dog The fact that “my dog” is right after “I walk” is
the important part, not its absolute position

we want to represent position in a way that tokens with similar relative position have similar positional encoding

Idea: what if we use frequency-based representations?

dimensionality
of positional
encoding

“even-odd” indicator

“first-half vs. second-half” indicator

Convolution: a 2-D example

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

input output

filter
1 2 1

0 0 0

-1 -2 -1

Convolution: Multi-channel inputs

∗ =

window:
Ci × Kh × Kw

filter:
Ci × Kh × Kw

Composing basic operations

conv
3×3, 16

conv
3×3, 16

conv
3×3, 16

conv
3×3, 16

these are activations (features, embeddings, tensors …)

these are operations (functions, transforms, layers …)

two ways of showing
neural nets

“Attention is all you need”, Vaswani, et al., 2017

A Transformer Block has two Residual Blocks.

Residual Block: TransformerOne last detail: layer normalization
Main idea: batch normalization is very helpful, but hard to use with sequence models

Sequences are different lengths, makes normalizing across the batch hard
Sequences can be very long, so we sometimes have small batches

Simple solution: “layer normalization” – like batch norm, but not across the batch
Batch norm Layer norm

Positional encoding: learned
Another idea: just learn a positional encoding

Different for every input sequence

The same learned values for every sequence

but different for different time steps

How many values do we need to learn?

dimensionality max sequence length

+ more flexible (and perhaps more optimal) than sin/cos encoding

+ a bit more complex, need to pick a max sequence length (and can’t generalize beyond it)

Published as a conference paper at ICLR 2021

Transformer Encoder

MLP
Head

Vision Transformer (ViT)

*

Linear Projection of Flattened Patches
* Extra learnable

 [c l ass] embedding

1 2 3 4 5 6 7 8 90Patch + Position
Embedding

Class
Bird
Ball
Car
...

Embedded
Patches

Multi-Head
Attention

Norm

MLP

Norm

+L x

+

Transformer Encoder

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

3 METHOD

In model design we follow the original Transformer (Vaswani et al., 2017) as closely as possible.
An advantage of this intentionally simple setup is that scalable NLP Transformer architectures – and
their efficient implementations – can be used almost out of the box.

3.1 VISION TRANSFORMER (VIT)

An overview of the model is depicted in Figure 1. The standard Transformer receives as input a 1D
sequence of token embeddings. To handle 2D images, we reshape the image x 2 RH⇥W⇥C into a
sequence of flattened 2D patches xp 2 RN⇥(P 2·C), where (H,W) is the resolution of the original
image, C is the number of channels, (P, P) is the resolution of each image patch, and N = HW/P

2

is the resulting number of patches, which also serves as the effective input sequence length for the
Transformer. The Transformer uses constant latent vector size D through all of its layers, so we
flatten the patches and map to D dimensions with a trainable linear projection (Eq. 1). We refer to
the output of this projection as the patch embeddings.

Similar to BERT’s [class] token, we prepend a learnable embedding to the sequence of embed-
ded patches (z00 = xclass), whose state at the output of the Transformer encoder (z0

L
) serves as the

image representation y (Eq. 4). Both during pre-training and fine-tuning, a classification head is at-
tached to z0

L
. The classification head is implemented by a MLP with one hidden layer at pre-training

time and by a single linear layer at fine-tuning time.

Position embeddings are added to the patch embeddings to retain positional information. We use
standard learnable 1D position embeddings, since we have not observed significant performance
gains from using more advanced 2D-aware position embeddings (Appendix D.4). The resulting
sequence of embedding vectors serves as input to the encoder.

The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
attention (MSA, see Appendix A) and MLP blocks (Eq. 2, 3). Layernorm (LN) is applied before
every block, and residual connections after every block (Wang et al., 2019; Baevski & Auli, 2019).

3

Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.” ICLR 2021.

