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Image generation methods

e Variational autoencoder
e GAN
e Diffusion model

* Visual AutoRegressive modeling



Diffusion

. |dea: Estimating and analyzing small step sizes is more tractable/easier than a single
step from random noise to the learned distribution

- Convert a well-known and simple base distribution (like a Gaussian) to the target
(data) distribution iteratively, with small step sizes, via a Markov chain:
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Diffusion models: X0
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noise and then reverse

Markov chain: outlines the probability associated with a sequence of events occurring
based on the state in the previous event.



Forward Process

e Noise added can be parameterized by:

i
Q(xt|xt—1) = N(Xt; AL — ,tht—la,BtI) Q(x1:T|X0) = HQ(xt|xt—1) {,Bt € (0, 1) thl

t=1

Vary the parameters of the Gaussian according to a noise schedule

® You can prove with some math that as T approaches infinity, you eventually end up with an Isotropic
Gaussian (i.e. pure random noise)

Note: forward process is fixed



Reparameterization trick

Do you have to add noise iteratively to get to some timestep t? Nope!

Reverse process can be written in one step:

q(x; | x0) = N(\/c‘v_tx(,, (1-— at)I) (: i ll—lt_ 5; ‘
t — 1li=1%¢

This will be useful during training!



Implementing Forward Process
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Reverse Process
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Reverse Process
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Q(Xt—1|xt) is unknown



Reverse Process
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The goal of a diffusion model is to learn the reverse denoising process to
iteratively undo the forward process

In this way, the reverse process appears as if it is generating new data from
random noise!



Neural Network that predicts noise

Input U-net




Algorithm 1 Training Algorithm 2 Sampling

1: repeat 1: x7 ~N(0,1)
20 Xo ~ q(xo) 2: fort=T,...,1do
23 tN%l(l(f)OIBM{L---»T}) 30z~ N(0,I)ift > 1,elsez =0
- €™ ’ : _ 1 l—«
5: Take gradient descent step on X1 = e (Xt - \/ﬁeg(xt,t)) + otz
Vo He—e@(\/atx0+\/1 —&tE,t)HQ 5: end for
6: return xg

6: until converged

Denoising Diffusion Probabilistic Models (DDPM)



U-net Problem

U-net

1024x1024 1024x1024

Problem: operating in the input space is very computationally expensive!



Option #1: Generate Low-Resolution + Upsample

Input U-net

' '256x256 256x256

1024x1024 1024x1024

Downsample Upsample



Option #2: Generate in Latent Space

Input U-net Output

(I

1024x1024 1024x1024

Downsample Upsample



Controlling ditffusion model

* Explicit conditioning
e Classifier-free guidance



Explicit Conditioning

“a young schoolboy in a red shirt”

5 Slide Credit: CVPR 2023 Diffusion Models Tutorial




Explicit Conditioning
How do we train this?

Use an Image-Text dataset (for example, LAION 5B)



Algorithm 1 Training

repeat
xo ~ q(Xo)
t ~ Uniform({1,...,T})
e ~ N(0,I)
Take gradient descent step on
Vo He — eo(v/arxo + V1 — &te,t)H2

6: until converged

Al

Unconditional



Classifier Free Guidance

Train an explicitly conditioned diffusion model:  €g (:I?t, t, y)

But also train it to be unconditional

We can do this with conditioning dropout:  €g (th, t, D )
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Classifier Free Guidance

€o (xtv ta y)
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Classifier Free Guidance

69(3%@ y) _ Eg(ﬂft, t? @)
EH(xtv ta y)

66’(37757 t? @)



Classifier Free Guidance

69(3%@ y) _ Eg(ﬂft, t? @)

€0 (mt’ t’ y) “Direction” from unconditional
sample to conditional sample

66’(37757 t? @)



Classifier Free Guidance

69(ﬂ3t7t7 y) _ Eg(ﬂft, t? @)

€0 (mt’ t’ y) “Direction” from unconditional
sample to conditional sample

Use this as our
guidance perturbation

66’(37757 t? @)
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Classifier Free Guidance

Our new noise estimate will then be:

g(xta t, y) — 69($t7t7 @) T V(GQ(xta t, y) — EQ(thvt? @))



Visual AutoRegressive modeling

Stage 1: Training multi-scale VQVAE on images
(to provide the ground truth for training Stage 2)
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VAE encoding Multi-scale quantization & Embedding Decoding

Stage 2: Training VAR transformer on tokens
(IS] means a start token with condition information)
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Figure 4: VAR involves two separated training stages. Stage 1: a multi-scale VQ autoencoder encodes
an image into K token maps R = (r1,72,...,7k) and is trained by a compound loss (5). For details on
“Multi-scale quantization” and “Embedding”, check Algorithm 1 and 2. Stage 2: a VAR transformer is trained

via next-scale prediction (6): it takes ([s],r1, 2, .

..,TKk—1) as input to predict (r1,72,73,...,7x). The

attention mask 1is used in training to ensure each r can only attend to r<,. Standard cross-entropy loss is used.

“Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction”. In NeurlIPS, 2024.



Image Editing

Input Image Edited Image Input Image Edited Image Input Image Edited Image
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“A bird sﬁreading “A person giving “A goat jumping
wings” the thumbs up” over g cat”

a “ilk
Target Text:

“Imagic: Text-Based Real Image Editing with Diffusion Models”. In CVPR, 2023.
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Figure 3. Schematic description of Imagic. Given a real image and a target text prompt: (A) We encode the target text and get the initial
text embedding e qt, then optimize it to reconstruct the input image, obtaining €.pt, (B) We then fine-tune the generative model to improve
fidelity to the input image while fixing e.pt; (C) Finally, we interpolate e, with eiq4: to generate the final editing result.
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