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Image generation methods

• Variational autoencoder
• GAN
• Diffusion model
• Visual AutoRegressive modeling



• Idea: Estimating and analyzing small step sizes is more tractable/easier than a single 
step from random noise to the learned distribution

• Convert a well-known and simple base distribution (like a Gaussian) to the target 
(data) distribution iteratively, with small step sizes, via a Markov chain:

• Markov chain: outlines the probability associated with a sequence of events occurring 
based on the state in the previous event.

Diffusion
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DiffusionForward Process

● Noise added can be parameterized by:

Vary the parameters of the Gaussian according to a noise schedule

● You can prove with some math that as T approaches infinity, you eventually end up with an Isotropic 
Gaussian (i.e. pure random noise)

● Note: forward process is fixed



Reparameterization trick

Do you have to add noise iteratively to get to some timestep !? Nope!

Reverse process can be written in one step:

This will be useful during training!  



Implementing Forward Process

1.  Sample an image from the dataset:
2. Sample noise % & ' () *  (from a standard normal distribution)

3. Scale the image by  +", +" $"#
where 

4. Add - . +" $%: +" $"# + - . +" $%

"!
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Reverse Process



Reverse Process

● The goal of a diffusion model is to learn the reverse denoising process to 
iteratively undo the forward process

● In this way, the reverse process appears as if it is generating new data from 
random noise!



Neural Network that predicts noise
U-netInput Output



Algorithm 1 Training
1: repeat
2: x0 ⇠ q(x0)
3: t ⇠ Uniform({1, . . . , T})
4: ✏ ⇠ N (0, I)
5: Take gradient descent step on
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6: until converged

Algorithm 2 Sampling

1: xT ⇠ N (0, I)
2: for t = T, . . . , 1 do
3: z ⇠ N (0, I) if t > 1, else z = 0
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5: end for
6: return x0
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where ✏✓ is a function approximator intended to predict ✏ from xt. To sample xt�1 ⇠ p✓(xt�1|xt) is
to compute xt�1 = 1p

↵t

⇣
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+�tz, where z ⇠ N (0, I). The complete sampling

procedure, Algorithm 2, resembles Langevin dynamics with ✏✓ as a learned gradient of the data
density. Furthermore, with the parameterization (11), Eq. (10) simplifies to:
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which resembles denoising score matching over multiple noise scales indexed by t [55]. As Eq. (12)
is equal to (one term of) the variational bound for the Langevin-like reverse process (11), we see
that optimizing an objective resembling denoising score matching is equivalent to using variational
inference to fit the finite-time marginal of a sampling chain resembling Langevin dynamics.

To summarize, we can train the reverse process mean function approximator µ✓ to predict µ̃t, or by
modifying its parameterization, we can train it to predict ✏. (There is also the possibility of predicting
x0, but we found this to lead to worse sample quality early in our experiments.) We have shown that
the ✏-prediction parameterization both resembles Langevin dynamics and simplifies the diffusion
model’s variational bound to an objective that resembles denoising score matching. Nonetheless,
it is just another parameterization of p✓(xt�1|xt), so we verify its effectiveness in Section 4 in an
ablation where we compare predicting ✏ against predicting µ̃t.

3.3 Data scaling, reverse process decoder, and L0

We assume that image data consists of integers in {0, 1, . . . , 255} scaled linearly to [�1, 1]. This
ensures that the neural network reverse process operates on consistently scaled inputs starting from
the standard normal prior p(xT ). To obtain discrete log likelihoods, we set the last term of the reverse
process to an independent discrete decoder derived from the Gaussian N (x0;µ✓(x1, 1), �2

1I):
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where D is the data dimensionality and the i superscript indicates extraction of one coordinate.
(It would be straightforward to instead incorporate a more powerful decoder like a conditional
autoregressive model, but we leave that to future work.) Similar to the discretized continuous
distributions used in VAE decoders and autoregressive models [34, 52], our choice here ensures that
the variational bound is a lossless codelength of discrete data, without need of adding noise to the
data or incorporating the Jacobian of the scaling operation into the log likelihood. At the end of
sampling, we display µ✓(x1, 1) noiselessly.

3.4 Simplified training objective

With the reverse process and decoder defined above, the variational bound, consisting of terms derived
from Eqs. (12) and (13), is clearly differentiable with respect to ✓ and is ready to be employed for
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Denoising Diffusion Probabilistic Models (DDPM)



U-net Problem
U-netInput Output

Problem: operating in the input space is very computationally expensive! 
1024x1024 1024x1024



Option #1: Generate Low-Resolution + Upsample

U-netInput Output

1024x1024 1024x1024

256x256

Downsample Upsample

256x256



Option #2: Generate in Latent Space

U-netInput Output

1024x1024 1024x1024

Encoder De
co
de

r

Downsample Upsample



Controlling diffusion model

• Explicit conditioning
• Classifier-free guidance



Explicit Conditioning
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“a young schoolboy in a red shirt”

Slide Credit: CVPR 2023 Diffusion Models Tutorial



Explicit Conditioning
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Use an Image-Text dataset (for example, LAION 5B)

How do we train this?



Unconditional
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Classifier Free Guidance
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Idea: Use the diffusion model itself to 
get perturbations for guidance

<latexit sha1_base64="plAspc4voa6zsc/5IorWsw+lCCo=">AAACA3icbZDLSgMxFIYz9VbrbdSdboJFqCBlRrwti25cVrAX6Awlk562oZkLyRmxlIIbX8WNC0Xc+hLufBvTy0JbDwl8/P85JOcPEik0Os63lVlYXFpeya7m1tY3Nrfs7Z2qjlPFocJjGat6wDRIEUEFBUqoJwpYGEioBb3rkV+7B6VFHN1hPwE/ZJ1ItAVnaKSmvedBooU06GEXkBUemnhMzekfNe28U3TGRefBnUKeTKvctL+8VszTECLkkmndcJ0E/QFTKLiEYc5LNSSM91gHGgYjFoL2B+MdhvTQKC3ajpW5EdKx+ntiwEKt+2FgOkOGXT3rjcT/vEaK7Ut/IKIkRYj4 5KF2KinGdBQIbQkFHGXfAONKmL9S3mWKcTSx5UwI7uzK81A9KbrnxbPb03zpahpHluyTA1IgLrkgJXJDyqRCOHkkz+SVvFlP1ov1bn1MWjPWdGaX/Cnr8wfawZcB</latexit>

ϵθ(xt, t, y)Train an explicitly conditioned diffusion model:

But also train it to be unconditional
<latexit sha1_base64="H6EFQDRN3/v30M0kXYqCg22ZPVs=">AAACDXicbZDLSgMxFIYz9VbrrerSTbAKFaTMiLdl0Y3LCvYCnVIy6WkbmskMyZliKX0BN76KGxeKuHXvzrcxvSy0ekjg4//PITl/EEth0HW/nNTC4tLySno1s7a+sbmV3d6pmCjRHMo8kpGuBcyAFArKKFBCLdbAwkBCNehdj/1qH7QRkbrDQQyNkHWUaAvO0ErN7IEPsRHSoo9dQJa/b+IxtcfvM60i7ArVOWpmc27BnRT9C94McmRWpWb2029FPAlBIZfMmLrnxtgYMo2CSxhl/MRAzHiPdaBuUbEQTGM42WZED63Sou1I26uQTtSfE0MWGjMIA9sZMuyaeW8s/ufVE2xf NoZCxQmC4tOH2omkGNFxNLQlNHCUAwuMa2H/SnmXacbRBpixIXjzK/+FyknBOy+c3Z7milezONJkj+yTPPHIBSmSG1IiZcLJA3kiL+TVeXSenTfnfdqacmYzu+RXOR/fBkqbiA==</latexit>

ϵθ(xt, t,∅)We can do this with conditioning dropout:



Classifier Free Guidance
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<latexit sha1_base64="plAspc4voa6zsc/5IorWsw+lCCo=">AAACA3icbZDLSgMxFIYz9VbrbdSdboJFqCBlRrwti25cVrAX6Awlk562oZkLyRmxlIIbX8WNC0Xc+hLufBvTy0JbDwl8/P85JOcPEik0Os63lVlYXFpeya7m1tY3Nrfs7Z2qjlPFocJjGat6wDRI EUEFBUqoJwpYGEioBb3rkV+7B6VFHN1hPwE/ZJ1ItAVnaKSmvedBooU06GEXkBUemnhMzekfNe28U3TGRefBnUKeTKvctL+8VszTECLkkmndcJ0E/QFTKLiEYc5LNSSM91gHGgYjFoL2B+MdhvTQKC3ajpW5EdKx+ntiwEKt+2FgOkOGXT3rjcT/vEaK7Ut/IKIkRYj4 5KF2KinGdBQIbQkFHGXfAONKmL9S3mWKcTSx5UwI7uzK81A9KbrnxbPb03zpahpHluyTA1IgLrkgJXJDyqRCOHkkz+SVvFlP1ov1bn1MWjPWdGaX/Cnr8wfawZcB</latexit>

ϵθ(xt, t, y)

<latexit sha1_base64="H6EFQDRN3/v30M0kXYqCg22ZPVs=">AAACDXicbZDLSgMxFIYz9VbrrerSTbAKFaTMiLdl0Y3LCvYCnVIy6WkbmskMyZliKX0BN76KGxeKuHXvzrcxvSy0ekjg4//PITl/EEth0HW/nNTC4tLySno1s7a+sbmV3d6pmCjRHMo8kpGuBcyA FArKKFBCLdbAwkBCNehdj/1qH7QRkbrDQQyNkHWUaAvO0ErN7IEPsRHSoo9dQJa/b+IxtcfvM60i7ArVOWpmc27BnRT9C94McmRWpWb2029FPAlBIZfMmLrnxtgYMo2CSxhl/MRAzHiPdaBuUbEQTGM42WZED63Sou1I26uQTtSfE0MWGjMIA9sZMuyaeW8s/ufVE2xf NoZCxQmC4tOH2omkGNFxNLQlNHCUAwuMa2H/SnmXacbRBpixIXjzK/+FyknBOy+c3Z7milezONJkj+yTPPHIBSmSG1IiZcLJA3kiL+TVeXSenTfnfdqacmYzu+RXOR/fBkqbiA==</latexit>

ϵθ(xt, t,∅)
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<latexit sha1_base64="plAspc4voa6zsc/5IorWsw+lCCo=">AAACA3icbZDLSgMxFIYz9VbrbdSdboJFqCBlRrwti25cVrAX6Awlk562oZkLyRmxlIIbX8WNC0Xc+hLufBvTy0JbDwl8/P85JOcPEik0Os63lVlYXFpeya7m1tY3Nrfs7Z2qjlPFocJjGat6wDRI EUEFBUqoJwpYGEioBb3rkV+7B6VFHN1hPwE/ZJ1ItAVnaKSmvedBooU06GEXkBUemnhMzekfNe28U3TGRefBnUKeTKvctL+8VszTECLkkmndcJ0E/QFTKLiEYc5LNSSM91gHGgYjFoL2B+MdhvTQKC3ajpW5EdKx+ntiwEKt+2FgOkOGXT3rjcT/vEaK7Ut/IKIkRYj4 5KF2KinGdBQIbQkFHGXfAONKmL9S3mWKcTSx5UwI7uzK81A9KbrnxbPb03zpahpHluyTA1IgLrkgJXJDyqRCOHkkz+SVvFlP1ov1bn1MWjPWdGaX/Cnr8wfawZcB</latexit>

ϵθ(xt, t, y)

<latexit sha1_base64="H6EFQDRN3/v30M0kXYqCg22ZPVs=">AAACDXicbZDLSgMxFIYz9VbrrerSTbAKFaTMiLdl0Y3LCvYCnVIy6WkbmskMyZliKX0BN76KGxeKuHXvzrcxvSy0ekjg4//PITl/EEth0HW/nNTC4tLySno1s7a+sbmV3d6pmCjRHMo8kpGuBcyA FArKKFBCLdbAwkBCNehdj/1qH7QRkbrDQQyNkHWUaAvO0ErN7IEPsRHSoo9dQJa/b+IxtcfvM60i7ArVOWpmc27BnRT9C94McmRWpWb2029FPAlBIZfMmLrnxtgYMo2CSxhl/MRAzHiPdaBuUbEQTGM42WZED63Sou1I26uQTtSfE0MWGjMIA9sZMuyaeW8s/ufVE2xf NoZCxQmC4tOH2omkGNFxNLQlNHCUAwuMa2H/SnmXacbRBpixIXjzK/+FyknBOy+c3Z7milezONJkj+yTPPHIBSmSG1IiZcLJA3kiL+TVeXSenTfnfdqacmYzu+RXOR/fBkqbiA==</latexit>

ϵθ(xt, t,∅)

<latexit sha1_base64="guHfPJtHH5li1Jv2nDN13jc4WBU=">AAACKnicdZDLSgMxFIYzXmu9VV26CRZBQcuMeFtW3bhUsFXoDCWTnrahmcyQnCmW0udx46u46UIpbn0Q0zoLrXpI4OP/zyE5f5hIYdB1R87M7Nz8wmJuKb+8srq2XtjYrJo41RwqPJaxfgiZASkU VFCghIdEA4tCCfdh52rs33dBGxGrO+wlEESspURTcIZWqhcufEiMkBZ9bAOyvcc6HlB7evv0kP5n+l2mVYxtoVr79ULRLbmTor/By6BIsrqpF4Z+I+ZpBAq5ZMbUPDfBoM80Ci5hkPdTAwnjHdaCmkXFIjBBf7LqgO5apUGbsbZXIZ2o3yf6LDKmF4W2M2LYNtPeWPzL q6XYPA/6QiUpguJfDzVTSTGm49xoQ2jgKHsWGNfC/pXyNtOMo003b0Pwplf+DdWjkndaOrk9LpYvszhyZJvskD3ikTNSJtfkhlQIJ0/khbySN+fZGToj5/2rdcbJZrbIj3I+PgHzSKZf</latexit>

ϵθ(xt, t, y)− ϵθ(xt, t,∅)
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ϵθ(xt, t, y)

<latexit sha1_base64="H6EFQDRN3/v30M0kXYqCg22ZPVs=">AAACDXicbZDLSgMxFIYz9VbrrerSTbAKFaTMiLdl0Y3LCvYCnVIy6WkbmskMyZliKX0BN76KGxeKuHXvzrcxvSy0ekjg4//PITl/EEth0HW/nNTC4tLySno1s7a+sbmV3d6pmCjRHMo8kpGuBcyA FArKKFBCLdbAwkBCNehdj/1qH7QRkbrDQQyNkHWUaAvO0ErN7IEPsRHSoo9dQJa/b+IxtcfvM60i7ArVOWpmc27BnRT9C94McmRWpWb2029FPAlBIZfMmLrnxtgYMo2CSxhl/MRAzHiPdaBuUbEQTGM42WZED63Sou1I26uQTtSfE0MWGjMIA9sZMuyaeW8s/ufVE2xf NoZCxQmC4tOH2omkGNFxNLQlNHCUAwuMa2H/SnmXacbRBpixIXjzK/+FyknBOy+c3Z7milezONJkj+yTPPHIBSmSG1IiZcLJA3kiL+TVeXSenTfnfdqacmYzu+RXOR/fBkqbiA==</latexit>

ϵθ(xt, t,∅)

<latexit sha1_base64="guHfPJtHH5li1Jv2nDN13jc4WBU=">AAACKnicdZDLSgMxFIYzXmu9VV26CRZBQcuMeFtW3bhUsFXoDCWTnrahmcyQnCmW0udx46u46UIpbn0Q0zoLrXpI4OP/zyE5f5hIYdB1R87M7Nz8wmJuKb+8srq2XtjYrJo41RwqPJaxfgiZASkU VFCghIdEA4tCCfdh52rs33dBGxGrO+wlEESspURTcIZWqhcufEiMkBZ9bAOyvcc6HlB7evv0kP5n+l2mVYxtoVr79ULRLbmTor/By6BIsrqpF4Z+I+ZpBAq5ZMbUPDfBoM80Ci5hkPdTAwnjHdaCmkXFIjBBf7LqgO5apUGbsbZXIZ2o3yf6LDKmF4W2M2LYNtPeWPzL q6XYPA/6QiUpguJfDzVTSTGm49xoQ2jgKHsWGNfC/pXyNtOMo003b0Pwplf+DdWjkndaOrk9LpYvszhyZJvskD3ikTNSJtfkhlQIJ0/khbySN+fZGToj5/2rdcbJZrbIj3I+PgHzSKZf</latexit>

ϵθ(xt, t, y)− ϵθ(xt, t,∅)

“Direction” from unconditional 
sample to conditional sample
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<latexit sha1_base64="plAspc4voa6zsc/5IorWsw+lCCo=">AAACA3icbZDLSgMxFIYz9VbrbdSdboJFqCBlRrwti25cVrAX6Awlk562oZkLyRmxlIIbX8WNC0Xc+hLufBvTy0JbDwl8/P85JOcPEik0Os63lVlYXFpeya7m1tY3Nrfs7Z2qjlPFocJjGat6wDRI EUEFBUqoJwpYGEioBb3rkV+7B6VFHN1hPwE/ZJ1ItAVnaKSmvedBooU06GEXkBUemnhMzekfNe28U3TGRefBnUKeTKvctL+8VszTECLkkmndcJ0E/QFTKLiEYc5LNSSM91gHGgYjFoL2B+MdhvTQKC3ajpW5EdKx+ntiwEKt+2FgOkOGXT3rjcT/vEaK7Ut/IKIkRYj4 5KF2KinGdBQIbQkFHGXfAONKmL9S3mWKcTSx5UwI7uzK81A9KbrnxbPb03zpahpHluyTA1IgLrkgJXJDyqRCOHkkz+SVvFlP1ov1bn1MWjPWdGaX/Cnr8wfawZcB</latexit>

ϵθ(xt, t, y)

<latexit sha1_base64="H6EFQDRN3/v30M0kXYqCg22ZPVs=">AAACDXicbZDLSgMxFIYz9VbrrerSTbAKFaTMiLdl0Y3LCvYCnVIy6WkbmskMyZliKX0BN76KGxeKuHXvzrcxvSy0ekjg4//PITl/EEth0HW/nNTC4tLySno1s7a+sbmV3d6pmCjRHMo8kpGuBcyA FArKKFBCLdbAwkBCNehdj/1qH7QRkbrDQQyNkHWUaAvO0ErN7IEPsRHSoo9dQJa/b+IxtcfvM60i7ArVOWpmc27BnRT9C94McmRWpWb2029FPAlBIZfMmLrnxtgYMo2CSxhl/MRAzHiPdaBuUbEQTGM42WZED63Sou1I26uQTtSfE0MWGjMIA9sZMuyaeW8s/ufVE2xf NoZCxQmC4tOH2omkGNFxNLQlNHCUAwuMa2H/SnmXacbRBpixIXjzK/+FyknBOy+c3Z7milezONJkj+yTPPHIBSmSG1IiZcLJA3kiL+TVeXSenTfnfdqacmYzu+RXOR/fBkqbiA==</latexit>

ϵθ(xt, t,∅)

<latexit sha1_base64="guHfPJtHH5li1Jv2nDN13jc4WBU=">AAACKnicdZDLSgMxFIYzXmu9VV26CRZBQcuMeFtW3bhUsFXoDCWTnrahmcyQnCmW0udx46u46UIpbn0Q0zoLrXpI4OP/zyE5f5hIYdB1R87M7Nz8wmJuKb+8srq2XtjYrJo41RwqPJaxfgiZASkU VFCghIdEA4tCCfdh52rs33dBGxGrO+wlEESspURTcIZWqhcufEiMkBZ9bAOyvcc6HlB7evv0kP5n+l2mVYxtoVr79ULRLbmTor/By6BIsrqpF4Z+I+ZpBAq5ZMbUPDfBoM80Ci5hkPdTAwnjHdaCmkXFIjBBf7LqgO5apUGbsbZXIZ2o3yf6LDKmF4W2M2LYNtPeWPzL q6XYPA/6QiUpguJfDzVTSTGm49xoQ2jgKHsWGNfC/pXyNtOMo003b0Pwplf+DdWjkndaOrk9LpYvszhyZJvskD3ikTNSJtfkhlQIJ0/khbySN+fZGToj5/2rdcbJZrbIj3I+PgHzSKZf</latexit>

ϵθ(xt, t, y)− ϵθ(xt, t,∅)

“Direction” from unconditional 
sample to conditional sample

Use this as our 
guidance perturbation
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Our new noise estimate will then be:

“Direction” from unconditional to conditional

<latexit sha1_base64="OjRtM85Tn8ELP81aTXB/aFDH2/k=">AAACdXicjVFdaxNBFJ1dq7bxo9G+FIowpioJ1bgrqH0pBH3xsYJpC9mw3J3cJEPnY5m5W1xC/0Ef/WW+9W/0xVcnSSvaKniZgcM592Pm3KJU0lOSnEfxrZXbd+6urjXu3X/wcL356PGBt5UT2BdW WXdUgEclDfZJksKj0iHoQuFhcfxxrh+eoPPSmi9UlzjUMDFyLAVQoPLmWUZSjTDD0ktlTftrTi95OHWH7/ErNs9oigS/xOwEnLE0lWbS4Ts8m4DW0P5Xdmj16r9adfLmdtJNFsFvgvQSbPda2c638169nze/ZyMrKo2GhALvB2lS0nAGjqRQeNrIKo8liGOY4CBAAxr9 cLZw7ZQ/D8yIj60L1xBfsL9XzEB7X+siZGqgqb+uzcm/aYOKxrvDmTRlRWjEctC4Upwsn6+Aj6RDQaoOAIST4a1cTMGBoLCoRjAhvf7lm+DgTTd91337ObjxgS1jlW2xFmuzlL1nPfaJ7bM+E+wi2oyeRq3oR/wkfha/WKbG0WXNBvsj4tc/AfrBv0c=</latexit>

ϵ̃(xt, t, y) = ϵθ(xt, t,∅) + γ(ϵθ(xt, t, y)− ϵθ(xt, t,∅))
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Image Editing

Imagic: Text-Based Real Image Editing with Diffusion Models

Bahjat Kawar˚ 1,2 Shiran Zada˚ 1 Oran Lang1 Omer Tov1

Huiwen Chang1 Tali Dekel1,3 Inbar Mosseri1 Michal Irani1,3
1Google Research 2Technion 3Weizmann Institute of Science

Input Image

Target Text:

Edited Image

“A bird spreading 
wings”

Target Text: “A sitting dog”

Input Image Edited Image

“A person giving 
the thumbs up”

“Two kissing 
parrots”

Input Image Edited Image

“A goat jumping 
over a cat”

“A children’s drawing
of a waterfall”

Figure 1. Imagic – Editing a single real image. Our method can perform various text-based semantic edits on a single real input image,
including highly complex non-rigid changes such as posture changes and editing multiple objects. Here, we show pairs of 1024ˆ1024
input (real) images, and edited outputs with their respective target texts.

Abstract

Text-conditioned image editing has recently attracted
considerable interest. However, most methods are cur-
rently limited to one of the following: specific editing types
(e.g., object overlay, style transfer), synthetically generated
images, or requiring multiple input images of a common
object. In this paper we demonstrate, for the very first
time, the ability to apply complex (e.g., non-rigid) text-
based semantic edits to a single real image. For exam-
ple, we can change the posture and composition of one
or multiple objects inside an image, while preserving its
original characteristics. Our method can make a stand-
ing dog sit down, cause a bird to spread its wings, etc.
– each within its single high-resolution user-provided nat-
ural image. Contrary to previous work, our proposed
method requires only a single input image and a target
text (the desired edit). It operates on real images, and

˚ Equal contribution.
The first author performed this work as an intern at Google Research.
Project page: https://imagic-editing.github.io/.

does not require any additional inputs (such as image
masks or additional views of the object). Our method,
called Imagic, leverages a pre-trained text-to-image diffu-
sion model for this task. It produces a text embedding
that aligns with both the input image and the target text,
while fine-tuning the diffusion model to capture the image-
specific appearance. We demonstrate the quality and versa-
tility of Imagic on numerous inputs from various domains,
showcasing a plethora of high quality complex semantic
image edits, all within a single unified framework. To better
assess performance, we introduce TEdBench, a highly chal-
lenging image editing benchmark. We conduct a user study,
whose findings show that human raters prefer Imagic to pre-
vious leading editing methods on TEdBench.

1. Introduction

Applying non-trivial semantic edits to real photos has
long been an interesting task in image processing [41].
It has attracted considerable interest in recent years, en-
abled by the considerable advancements of deep learning-
based systems. Image editing becomes especially impres-
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“Imagic: Text-Based Real Image Editing with Diffusion Models”. In CVPR, 2023.



(A) Text Embedding Optimization (B) Model Fine-Tuning

(C) Interpolation & Generation

"A bird spreading wings."

Target Emb etgt Optimized Emb eopt

Pre-Trained
Diffusion Model

etgt

eopt

+ 
no

ise

Reconstruction Loss

Pre-Trained
Diffusion Modeleopt

Reconstruction Loss

+ 
no

ise

Fine-Tuned
Diffusion Processinterpolate

etgt eopt

Input Input

Output

Figure 3. Schematic description of Imagic. Given a real image and a target text prompt: (A) We encode the target text and get the initial
text embedding etgt, then optimize it to reconstruct the input image, obtaining eopt; (B) We then fine-tune the generative model to improve
fidelity to the input image while fixing eopt; (C) Finally, we interpolate eopt with etgt to generate the final editing result.

or make a person give the thumbs up, as demonstrated in
Figure 1. Our method, which we call Imagic, provides the
first demonstration of text-based semantic editing that ap-
plies such sophisticated manipulations to a single real high-
resolution image, including editing multiple objects. In ad-
dition, Imagic can also perform a wide variety of edits, in-
cluding style changes, color changes, and object additions.

To achieve this feat, we take advantage of the recent suc-
cess of text-to-image diffusion models [47, 50, 53]. Diffu-
sion models are powerful state-of-the-art generative models,
capable of high quality image synthesis [16,22]. When con-
ditioned on natural language text prompts, they are able to
generate images that align well with the requested text. We
adapt them in our work to edit real images instead of syn-
thesizing new ones. We do so in a simple 3-step process, as
depicted in Figure 3: We first optimize a text embedding so
that it results in images similar to the input image. Then, we
fine-tune the pre-trained generative diffusion model (condi-
tioned on the optimized embedding) to better reconstruct
the input image. Finally, we linearly interpolate between
the target text embedding and the optimized one, resulting
in a representation that combines both the input image and
the target text. This representation is then passed to the gen-
erative diffusion process with the fine-tuned model, which
outputs our final edited image.

We conduct several experiments and apply our method
on numerous images from various domains. Our method
outputs high quality images that both resemble the input
image to a high degree, and align well with the target
text. These results showcase the generality, versatility, and
quality of Imagic. We additionally conduct an ablation
study, highlighting the effect of each element of our method.
When compared to recent approaches suggested in the lit-
erature, Imagic exhibits significantly better editing qual-
ity and faithfulness to the original image, especially when
tasked with sophisticated non-rigid edits. This is further
supported by a human perceptual evaluation study, where
raters strongly prefer Imagic over other methods on a novel

benchmark called TEdBench – Textual Editing Benchmark.
We summarize our main contributions as follows:
1. We present Imagic, the first text-based semantic image

editing technique that allows for complex non-rigid edits
on a single real input image, while preserving its overall
structure and composition.

2. We demonstrate a semantically meaningful linear inter-
polation between two text embedding sequences, uncov-
ering strong compositional capabilities of text-to-image
diffusion models.

3. We introduce TEdBench – a novel and challenging com-
plex image editing benchmark, which enables compar-
isons of different text-based image editing methods.

2. Related Work

Following recent advancements in image synthesis qual-
ity [26–29], many works utilized the latent space of pre-
trained generative adversarial networks (GANs) to perform
a variety of image manipulations [3,19,36,43,56,57]. Mul-
tiple techniques for applying such manipulations on real im-
ages were suggested, including optimization-based meth-
ods [1, 2, 25], encoder-based methods [4, 48, 64], and meth-
ods adjusting the model per input [5, 9, 15, 49]. In addition
to GAN-based methods, some techniques utilize other deep
learning-based systems for image editing [8, 12].

More recently, diffusion models were utilized for similar
image manipulation tasks, showcasing remarkable results.
SDEdit [38] adds intermediate noise to an image (possibly
augmented by user-provided brush strokes), then denoises
it using a diffusion process conditioned on the desired edit,
which is limited to global edits. DDIB [62] encodes an input
image using DDIM inversion with a source class (or text),
and decodes it back conditioned on the target class (or text)
to obtain an edited version. DiffusionCLIP [33] utilizes
language-vision model gradients, DDIM inversion [59], and
model fine-tuning to edit images using a domain-specific
diffusion model. It was also suggested to edit images by

Increasing η
Input Image Edited Image

Target Text: “A blue car”

Target Text: “A bar stool”
Figure 5. Smooth interpolation. We can smoothly interpolate between the optimized text embedding and the target text embedding,
resulting in a gradual editing of the input image toward the required text as ⌘ increases (See animated GIFs in supplementary material).

More formally, as depicted in Figure 3, our method con-
sists of 3 stages: (i) we optimize the text embedding to find
one that best matches the given image in the vicinity of the
target text embedding; (ii) we fine-tune the diffusion models
to better match the given image; and (iii) we linearly inter-
polate between the optimized embedding and the target text
embedding, in order to find a point that achieves both fi-
delity to the input image and target text alignment. We now
turn to describe each step in more detail.

Text embedding optimization The target text is first
passed through a text encoder [46], which outputs its cor-
responding text embedding etgt P RTˆd, where T is the
number of tokens in the given target text, and d is the to-
ken embedding dimension. We then freeze the parameters
of the generative diffusion model f✓, and optimize the tar-
get text embedding etgt using the denoising diffusion ob-
jective [22]:

Lpx, e, ✓q “ Et,✏

”
}✏ ´ f✓pxt, t, eq}22

ı
, (2)

where t„Uniformr1, T s, xt is a noisy version of x (the in-
put image) obtained using ✏„N p0, Iq and Equation 1, and
✓ are the pre-trained diffusion model weights. This results
in a text embedding that matches our input image as closely
as possible. We run this process for relatively few steps, in
order to remain close to the initial target text embedding,
obtaining eopt. This proximity enables meaningful linear
interpolation in the embedding space, which does not ex-
hibit linear behavior for distant embeddings.

Model fine-tuning Note that the obtained optimized em-
bedding eopt does not necessarily lead to the input image x
exactly when passed through the generative diffusion pro-
cess, as our optimization runs for a small number of steps
(see top left image in Figure 7). Therefore, in the second
stage of our method, we close this gap by optimizing the
model parameters ✓ using the same loss function presented
in Equation 2, while freezing the optimized embedding.

This process shifts the model to fit the input image x at the
point eopt. In parallel, we fine-tune any auxiliary diffusion
models present in the underlying generative method, such
as super-resolution models. We fine-tune them with the
same reconstruction loss, but conditioned on etgt, as they
will operate on an edited image. The optimization of these
auxiliary models ensures the preservation of high-frequency
details from x that are not present in the base resolution.
Empirically, we found that at inference time, inputting etgt
to the auxiliary models performs better than using eopt.

Text embedding interpolation Since the generative dif-
fusion model was trained to fully recreate the input image
x at the optimized embedding eopt, we use it to apply the
desired edit by advancing in the direction of the target text
embedding etgt. More formally, our third stage is a sim-
ple linear interpolation between etgt and eopt. For a given
hyperparameter ⌘ P r0, 1s, we obtain

ē “ ⌘ ¨ etgt ` p1 ´ ⌘q ¨ eopt, (3)

which is the embedding that represents the desired edited
image. We then apply the base generative diffusion process
using the fine-tuned model, conditioned on ē. This results in
a low-resolution edited image, which is then super-resolved
using the fine-tuned auxiliary models, conditioned on the
target text. This generative process outputs our final high-
resolution edited image x̄.

3.3. Implementation Details

Our framework is general and can be combined with
different generative models. We demonstrate it using two
different state-of-the-art text-to-image generative diffusion
models: Imagen [53] and Stable Diffusion [50].

Imagen [53] consists of 3 separate text-conditioned dif-
fusion models: (i) a generative diffusion model for 64ˆ64-
pixel images; (ii) a super-resolution (SR) diffusion model
turning 64ˆ64-pixel images into 256ˆ256 ones; and
(iii) another SR model transforming 256ˆ256-pixel images
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Input Image Edited Image

Target Text: “A blue car”

Target Text: “A bar stool”
Figure 5. Smooth interpolation. We can smoothly interpolate between the optimized text embedding and the target text embedding,
resulting in a gradual editing of the input image toward the required text as ⌘ increases (See animated GIFs in supplementary material).

More formally, as depicted in Figure 3, our method con-
sists of 3 stages: (i) we optimize the text embedding to find
one that best matches the given image in the vicinity of the
target text embedding; (ii) we fine-tune the diffusion models
to better match the given image; and (iii) we linearly inter-
polate between the optimized embedding and the target text
embedding, in order to find a point that achieves both fi-
delity to the input image and target text alignment. We now
turn to describe each step in more detail.

Text embedding optimization The target text is first
passed through a text encoder [46], which outputs its cor-
responding text embedding etgt P RTˆd, where T is the
number of tokens in the given target text, and d is the to-
ken embedding dimension. We then freeze the parameters
of the generative diffusion model f✓, and optimize the tar-
get text embedding etgt using the denoising diffusion ob-
jective [22]:

Lpx, e, ✓q “ Et,✏

”
}✏ ´ f✓pxt, t, eq}22
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, (2)

where t„Uniformr1, T s, xt is a noisy version of x (the in-
put image) obtained using ✏„N p0, Iq and Equation 1, and
✓ are the pre-trained diffusion model weights. This results
in a text embedding that matches our input image as closely
as possible. We run this process for relatively few steps, in
order to remain close to the initial target text embedding,
obtaining eopt. This proximity enables meaningful linear
interpolation in the embedding space, which does not ex-
hibit linear behavior for distant embeddings.

Model fine-tuning Note that the obtained optimized em-
bedding eopt does not necessarily lead to the input image x
exactly when passed through the generative diffusion pro-
cess, as our optimization runs for a small number of steps
(see top left image in Figure 7). Therefore, in the second
stage of our method, we close this gap by optimizing the
model parameters ✓ using the same loss function presented
in Equation 2, while freezing the optimized embedding.

This process shifts the model to fit the input image x at the
point eopt. In parallel, we fine-tune any auxiliary diffusion
models present in the underlying generative method, such
as super-resolution models. We fine-tune them with the
same reconstruction loss, but conditioned on etgt, as they
will operate on an edited image. The optimization of these
auxiliary models ensures the preservation of high-frequency
details from x that are not present in the base resolution.
Empirically, we found that at inference time, inputting etgt
to the auxiliary models performs better than using eopt.

Text embedding interpolation Since the generative dif-
fusion model was trained to fully recreate the input image
x at the optimized embedding eopt, we use it to apply the
desired edit by advancing in the direction of the target text
embedding etgt. More formally, our third stage is a sim-
ple linear interpolation between etgt and eopt. For a given
hyperparameter ⌘ P r0, 1s, we obtain

ē “ ⌘ ¨ etgt ` p1 ´ ⌘q ¨ eopt, (3)

which is the embedding that represents the desired edited
image. We then apply the base generative diffusion process
using the fine-tuned model, conditioned on ē. This results in
a low-resolution edited image, which is then super-resolved
using the fine-tuned auxiliary models, conditioned on the
target text. This generative process outputs our final high-
resolution edited image x̄.

3.3. Implementation Details

Our framework is general and can be combined with
different generative models. We demonstrate it using two
different state-of-the-art text-to-image generative diffusion
models: Imagen [53] and Stable Diffusion [50].

Imagen [53] consists of 3 separate text-conditioned dif-
fusion models: (i) a generative diffusion model for 64ˆ64-
pixel images; (ii) a super-resolution (SR) diffusion model
turning 64ˆ64-pixel images into 256ˆ256 ones; and
(iii) another SR model transforming 256ˆ256-pixel images


