
Safety Guardrails for Image 
Generation Models

Neil Gong



Defining harmful images

• Sexual content
• Nudity
• Pornography
• Violence
• Context-based harmfulness may be hard to define
• …



Why preventing harmful image generation

• Regular users

• Malicious users/attackers
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“Generate an image with nude body” Blank image

Method 1: Alignment
(concept erasure)

Method 2: Safety filters

How to prevent?



Safety filters
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approaches may not be reusable due to random seeds adopted
by text-to-image models. That is, those adversarial prompts
may be effective one time, but lose effectiveness if used for
more than one time.
Reinforcement Learning (RL). RL [36] is a technique to
incorporate feedback to make decisions. The key concepts
in RL include state, action, policy network, reward, and
environment. Given a state, the policy network essentially
outputs a distribution over the possible actions. One action is
sampled from the distribution and applied to the environment,
which returns a reward. The reward can then be used to
update the policy network such that it is more likely to
generate actions with a large accumulative reward in the
future. Note that the deployment of RL to search for an
adversarial prompt is challenging because SneakyPrompt
needs to not only decide the action space for adversarial
prompts, which is a large word space, but also design
a reward function to bypass the safety filter while still
preserving the generated images’ NSFW semantics.

3. Problem Formulation

In this section, we first define adversarial prompt against
safety filters of text-to-image models and then describe the
threat model of SneakyPrompt.

3.1. Definitions

We describe the definitions of two important concepts:
safety filters and adversarial prompts.

Safety Filter. A safety filter—formally denoted as F—
prohibits text-to-image model users from generating certain
images with so-called sensitive content, such as those related
to adult, violent, or politics. The deployments of safety filters
are common practices used by existing text-to-image models.
For example, DALL·E 2 [2] filters out contents from 11
categories such as hate, harassment, sexual, and self-harm.
Midjourney [22] blocks the generation of images that are
not PG-13. Stable Diffusion [1] also filters out contents from
17 concepts [16].

To the best of our knowledge, there is no existing
documentation on the taxonomy of safety filters used in
text-to-image models. Therefore, we come up with our own
taxonomy and describe them below. Note that we denote the
online text-to-image model as M with a frozen text encoder
E and a diffusion model D, the input prompt as p, and the
output generated image as M(p). Figure 1 shows the three
categories of safety filters:
• Text-based safety filter: This type of filter operates on the

text itself or the text embedding space. Usually, it blocks
prompts that include sensitive keywords or phrases in a
predetermined list and/or prompts that are close to such
sensitive keywords or phrases in the text embedding space.
It may also use a binary classifier to classify a prompt to
be sensitive or non-sensitive.

• Image-based safety filter: This type of filter operates on
the generated image. Specifically, the safety filter could be
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Figure 1: Categorization of three types of possible safety
filters that are deployed by text-to-image models, i.e., (i)
text-based, (ii) image-based, and (iii) text-image-based.

a binary image classifier trained with labeled non-sensitive
images and sensitive images, which predicts M(p) as
non-sensitive or sensitive.

• Text-image-based safety filter: This type of filter operates
on both the text and image spaces to block sensitive
content. For example, it could be a binary classifier
that takes both text and image embeddings as input and
outputs sensitive/non-sensitive. The open-source Stable
Diffusion [1] adopts a text-image-based safety filter, which
blocks a generated image if the cosine similarity between
its CLIP embedding and any pre-calculated CLIP text
embedding of 17 unsafe concepts is larger than a threshold.

Adversarial Prompt. Now let us formally define adver-
sarial prompts. Given a safety filter F and a prompt p,
F(M, p) = 1 indicates that the generated image M(p) has
sensitive content, and F(M, p) = 0 indicates that M(p)
does not. We define a prompt as adversarial if Definition 1
is satisfied.

Definition 1. [Adversarial Prompt] A prompt to a text-to-

image model M is an adversarial prompt pa relatively

to a sensitive, target prompt pt (i.e., F(M, pt) = 1), if

F(M, pa) = 0 and M(pa) has similar visual semantics as

M(pt).

Let us describe the definition from two aspects. First,
the adversarial prompt is a relative concept. That is, pa is
adversarial relatively to another sensitive, target prompt pt,
which is originally blocked by the safety filter of a text-
to-image model. Second, there are two conditions for an
adversarial prompt pa: (i) pa bypasses the safety filter F ,
and (ii) the generated image from pa is semantically similar
to that generated from pt. Both conditions are important,
i.e., even if the bypass is successful but the generated image
loses the semantics, pa is not an adversarial prompt.

Figure 2 shows some simple examples of adversarial
prompts generated by SneakyPrompt to illustrate what they
look like. The text in the parenthesis is pt, which is
blocked by an external safety filter (blocking both dogs
and cats) added after DALL·E 2 for illustration purposes.
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Alignment

• Safe training
• Remove unsafe images in training data

• Fine-tuning
• Diffusion model
• Text encoder

• Alignment at inference time



Fine-tuning (Erasing Concepts from Diffusion 
Models)

unconditional scores are both obtained from the model dur-
ing inference. The final score ✏̃✓(zt, c, t) is then directed
towards the conditioned score and away from the uncondi-
tioned score by utilizing a guidance scale ↵ > 1.

✏̃✓(zt, c, t) = ✏✓(zt, t) + ↵(✏✓(zt, c, t)� ✏✓(zt, t)) (3)

The inference process starts from a Gaussian noise zT ⇠
N (0, 1) and is denoised with the ✏̃✓(zT , c, T ) to get zT�1.
This process is done sequentially till z0 and is transformed
to image space using the decoder x0  D(z0).

4. Method

The goal of our method is to erase concepts from text-
to-image diffusion models using its own knowledge and no
additional data. Therefore, we consider fine-tuning a pre-
trained model rather than training a model from scratch. We
focus on Stable Diffusion (SD) [31], an LDM that consists of
3 subnetworks: a text encoder T , a diffusion model (U-Net)
✓⇤ and a decoder model D. We shall train new parameters ✓.

Our approach involves editing the pre-trained diffusion
U-Net model weights to remove a specific style or concept.
We aim to reduce the probability of generating an image x
according to the likelihood that is described by the concept,
scaled by a power factor ⌘.

P✓(x) /
P✓⇤(x)

P✓⇤(c|x)⌘ (4)

Where P✓⇤(x) represents the distribution generated by the
original model and c represents the concept to erase. Expand-
ing P (c|x) = P (x|c)P (c)

P (x) , the gradient of the log probability
r logP✓(x) would be proportional to:

r logP✓⇤(x)� ⌘(r logP✓⇤(x|c)�r logP✓⇤(x)) (5)

Based on Tweedie’s formula [12] and the reparametriza-
tion trick of [17], we can introduce a time-varying noising
process and express each score (gradient of log probability)
as a denoising prediction ✏(xt, c, t). Thus Eq. 5 becomes:

✏✓(xt, c, t) ✏✓⇤(xt, t)� ⌘[✏✓⇤(xt, c, t)� ✏✓⇤(xt, t)] (6)

This modified score function moves the data distribution
to minimize the generation probability of images x that
can be labeled as c. The objective function in Equation 6
fine-tunes the parameters ✓ such that ✏✓(xt, c, t) mimics the
negatively guided noise. That way, after the fine-tuning, the
edited model’s conditional prediction is guided away from
the erased concept.

Figure 2 illustrates our training process. We exploit the
model’s knowledge of the concept to synthesize training
samples, thereby eliminating the need for data collection.
Training uses several instances of the diffusion model, with

“car”  

Prompt
(a)

Cross-attention
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Self-attention
(c)

Generated image

“ ”  

Figure 3: When comparing generation of two similar car
images conditioned on different prompts, self-attention (b)
contributes to the features of a car regardless of the pres-
ence of the word “car” in the prompt, while the contribution
of cross-attention (a) is linked to the presence of the word.
Heatmaps show local contributions of the first attention mod-
ules of the 3rd upsampling block of the Stable Diffusion
U-net while generating the images (c).

one set of parameters frozen (✓⇤) while training the other set
of parameters (✓) to erase the concept. We sample partially
denoised images xt conditioned on c using ✓, then we per-
form inference on the frozen model ✓⇤ twice to predict the
noise, once conditioned on c and the other unconditioned.
Finally, we combine these two predictions linearly to negate
the predicted noise associated with the concept, and we tune
the new model towards that new objective.

4.1. Importance of Parameter Choice

The effect of applying the erasure objective (6) depends
on the subset of parameters that is fine-tuned. The main
distinction is between cross-attention parameters and non-
cross-attention parameters. Cross-attention parameters, illus-
trated in Figure 3a, serve as a gateway to the prompt, directly
depending on the text of the prompt, while other parameters
(Figure 3b) tend to contribute to a visual concept even if the
concept is not mentioned in the prompt.

Therefore we propose fine tuning the cross attentions,
ESD-x, when the erasure is required to be controlled and
specific to the prompt, such as when a named artistic style
should be erased. Further, we propose fine tuning uncondi-
tional layers (non-cross-attention modules), ESD-u, when
the erasure is required to be independent of the text in the
prompt, such as when the global concept of NSFW nudity
should be erased. We refer to cross-attention-only fine-
tuning as ESD-x-⌘ (where ⌘ refers to the strength of the
negative guidance), and we refer to the configuration that
tunes only non-cross-attention parameters as ESD-u-⌘. For
simplicity, we write ESD-x and ESD-u when ⌘ = 1.

The effects of parameter choices on artist style removal
are illustrated in Figure 4: when erasing the “Van Gogh”
style ESD-u and other unconditioned parameter choices
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Figure 2: The optimization process for erasing undesired visual concepts from pre-trained diffusion model weights involves
using a short text description of the concept as guidance. The ESD model is fine-tuned with the conditioned and unconditioned
scores obtained from frozen SD model to guide the output away from the concept being erased. The model learns from its own
knowledge to steer the diffusion process away from the undesired concept.

by associating a token for a new subject trained using only
a handful of images [13, 20, 35]. Unlike previous methods
that add or modify the appearance of objects, the goal of
our current work is to erase a targeted visual concept from
a diffusion model given only a single textual description of
the concept, object, or style to be removed.

Memorization and unlearning. While the traditional
goal of machine learning is to generalize without memo-
rization, large models are capable of exact memorization if
specifically trained to do so [48], and unintentional memo-
rization has also been observed in large-scale settings [6, 5],
including diffusion models [45]. The possibility of such ex-
act memorization has driven privacy and copyright concerns
and has led to work in machine unlearning [40, 4, 15], which
aims to modify a model to behave as if particular training
data had not been present. However, these methods are based
on the assumption that the undesired knowledge corresponds
to an identifiable set of training data points. The problem we
tackle in this paper is very different from the problem of un-
learning specific training data because rather than simulating
the removal of a known training item, our goal is to erase a
high-level visual concept that may have been learned from a
large and unknown subset of the training data, such as the
appearance of nudity, or the imitation of an artist’s style.

Energy-based composition. Our work is inspired by
the observation [10, 11] that set-like composition can be
performed naturally on energy-based models and diffusion
counterparts [22] naturally via arithmetic on the score or the
noise predictions. Score-based composition is also the basis
for classifier-free-guidance [18]. Like previous works, we
treat “A and not B” as the difference between log probability
densities for A and B; a similar observation has been used to
reduce the undesirable output of both language models [37]
and vision generators [38]. Unlike previous work that applies
composition at inference time, we introduce the use of score
composition as a source of unsupervised training data to
teach a fine-tuned model to erase an undesired concept from
model weights.

3. Background

3.1. Denoising Diffusion Models

Diffusion models are a class of generative models that
learn the distribution space as a gradual denoising pro-
cess [44, 17]. Starting from sampled Gaussian noise, the
model gradually denoises for T time steps until a final image
is formed. In practice, the diffusion model predicts noise
✏t at each time step t that is used to generate the intermedi-
ate denoised image xt; where xT corresponds to the initial
noise and x0 corresponds to the final image. This denoising
process is modeled as a Markov transition probability.

p✓(xT :0) = p(xT )
1Y

t=T

p✓(xt�1|xt) (1)

3.2. Latent Diffusion Models

Latent diffusion models (LDM) [31] improve efficiency
by operating in a lower dimensional latent space z of a pre-
trained variational autoencoder with encoder E and decoder
D. During training, for an image x, noise is added to its
encoded latent, z = E(x) leading to zt where the noise level
increases with t. LDM process can be interpreted as a se-
quence of denoising models with identical parameters ✓ that
learn to predict the noise ✏✓(zt, c, t) added to zt conditioned
on the timestep t as well as a text condition c. The following
objective function is optimized:

L = Ezt2E(x),t,c,✏⇠N (0,1)[k✏� ✏✓(zt, c, t)k22] (2)

Classifier-free guidance is a technique employed to regu-
late image generation, as described in Ho et al. [18]. This
method involves redirecting the probability distribution to-
wards data that is highly probable according to an implicit
classifier p(c|zt). This approach is used during inference
and requires that the model be jointly trained on both con-
ditional and unconditional denoising. The conditional and
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unconditional scores are both obtained from the model dur-
ing inference. The final score ✏̃✓(zt, c, t) is then directed
towards the conditioned score and away from the uncondi-
tioned score by utilizing a guidance scale ↵ > 1.

✏̃✓(zt, c, t) = ✏✓(zt, t) + ↵(✏✓(zt, c, t)� ✏✓(zt, t)) (3)

The inference process starts from a Gaussian noise zT ⇠
N (0, 1) and is denoised with the ✏̃✓(zT , c, T ) to get zT�1.
This process is done sequentially till z0 and is transformed
to image space using the decoder x0  D(z0).

4. Method

The goal of our method is to erase concepts from text-
to-image diffusion models using its own knowledge and no
additional data. Therefore, we consider fine-tuning a pre-
trained model rather than training a model from scratch. We
focus on Stable Diffusion (SD) [31], an LDM that consists of
3 subnetworks: a text encoder T , a diffusion model (U-Net)
✓⇤ and a decoder model D. We shall train new parameters ✓.

Our approach involves editing the pre-trained diffusion
U-Net model weights to remove a specific style or concept.
We aim to reduce the probability of generating an image x
according to the likelihood that is described by the concept,
scaled by a power factor ⌘.

P✓(x) /
P✓⇤(x)

P✓⇤(c|x)⌘ (4)

Where P✓⇤(x) represents the distribution generated by the
original model and c represents the concept to erase. Expand-
ing P (c|x) = P (x|c)P (c)

P (x) , the gradient of the log probability
r logP✓(x) would be proportional to:

r logP✓⇤(x)� ⌘(r logP✓⇤(x|c)�r logP✓⇤(x)) (5)

Based on Tweedie’s formula [12] and the reparametriza-
tion trick of [17], we can introduce a time-varying noising
process and express each score (gradient of log probability)
as a denoising prediction ✏(xt, c, t). Thus Eq. 5 becomes:

✏✓(xt, c, t) ✏✓⇤(xt, t)� ⌘[✏✓⇤(xt, c, t)� ✏✓⇤(xt, t)] (6)

This modified score function moves the data distribution
to minimize the generation probability of images x that
can be labeled as c. The objective function in Equation 6
fine-tunes the parameters ✓ such that ✏✓(xt, c, t) mimics the
negatively guided noise. That way, after the fine-tuning, the
edited model’s conditional prediction is guided away from
the erased concept.

Figure 2 illustrates our training process. We exploit the
model’s knowledge of the concept to synthesize training
samples, thereby eliminating the need for data collection.
Training uses several instances of the diffusion model, with

“car”  

Prompt
(a)

Cross-attention
(b)

Self-attention
(c)

Generated image

“ ”  

Figure 3: When comparing generation of two similar car
images conditioned on different prompts, self-attention (b)
contributes to the features of a car regardless of the pres-
ence of the word “car” in the prompt, while the contribution
of cross-attention (a) is linked to the presence of the word.
Heatmaps show local contributions of the first attention mod-
ules of the 3rd upsampling block of the Stable Diffusion
U-net while generating the images (c).

one set of parameters frozen (✓⇤) while training the other set
of parameters (✓) to erase the concept. We sample partially
denoised images xt conditioned on c using ✓, then we per-
form inference on the frozen model ✓⇤ twice to predict the
noise, once conditioned on c and the other unconditioned.
Finally, we combine these two predictions linearly to negate
the predicted noise associated with the concept, and we tune
the new model towards that new objective.

4.1. Importance of Parameter Choice

The effect of applying the erasure objective (6) depends
on the subset of parameters that is fine-tuned. The main
distinction is between cross-attention parameters and non-
cross-attention parameters. Cross-attention parameters, illus-
trated in Figure 3a, serve as a gateway to the prompt, directly
depending on the text of the prompt, while other parameters
(Figure 3b) tend to contribute to a visual concept even if the
concept is not mentioned in the prompt.

Therefore we propose fine tuning the cross attentions,
ESD-x, when the erasure is required to be controlled and
specific to the prompt, such as when a named artistic style
should be erased. Further, we propose fine tuning uncondi-
tional layers (non-cross-attention modules), ESD-u, when
the erasure is required to be independent of the text in the
prompt, such as when the global concept of NSFW nudity
should be erased. We refer to cross-attention-only fine-
tuning as ESD-x-⌘ (where ⌘ refers to the strength of the
negative guidance), and we refer to the configuration that
tunes only non-cross-attention parameters as ESD-u-⌘. For
simplicity, we write ESD-x and ESD-u when ⌘ = 1.

The effects of parameter choices on artist style removal
are illustrated in Figure 4: when erasing the “Van Gogh”
style ESD-u and other unconditioned parameter choices
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