
Jailbreak Attacks
Zeyu Michael Li, Chengyang Zhou

3 Feb 2025

Outline
1. Image Models & Safety Guardrails

○ Key models, safety mechanisms, and failure points.
2. Deep Dive: Paper 1 SneakyPrompt: Jailbreaking Text-to-image Generative Models

○ Adversarial prompts to bypass filters
3. Deep Dive: Paper 2 Ring-A-Bell! How Reliable are Concept Removal Methods for

Diffusion Models?
○ Data poisoning attacks on safety classifiers

4. Cross-Modal Lessons
○ LLM/VLM jailbreaking (misc papers)

5. Defense Strategies
○ Mitigations

https://arxiv.org/abs/2305.12082
https://arxiv.org/abs/2310.10012
https://arxiv.org/abs/2310.10012

Models
Image/Video Generation Models
● DALL-E, Stable Diffusion, Sora, Vidu

Safety Mechanisms:
1. Alignment: Training on curated datasets

to avoid harmful outputs.
2. Input Filters: Block prohibited keywords

(e.g., violence, NSFW terms).
3. Post-Generation Filters: NSFW

classifiers, pixel-level content detection.
4. Combination of 2 and 3
How to bypass filters?

Generated using Kling (快手可灵)

Existing Method&Motivation

Existing text adversarial
attacks (TextBugger,
TextFooler, etc.) fail
because:

1. Low success rate
2. Low semantic

similarity/quality drop
3. Low efficiency: require

too many queries

SneakyPrompt
1. High success/bypass

rate
2. Doesn’t change

semantic meaning of
images

3. Query-efficient

SneakyPrompt: Key Ideas

● Treat safety filters as a binary classifier (Safe vs.
Blocked). F(M(p),p)=1 or 0
○ Attacker has black-box access (no model weights).

● Purely Prompt-based method
● Generation of adversarial prompt is automatic -

rephrasing/search and replace filtered tokens using
reinforcement learning

SneakyPrompt: A successful attack (Intuition)
Two conditions

1. Bypass the filter
2. Semantic meaning

of image doesn’t
change

SneakyPrompt: A successful attack (real example)

Two conditions

1. Bypass the filter
2. Semantic meaning

of image doesn’t
change

A cat&dog filter is used for illustration purpose

SneakyPrompt: Overall Pipeline

SneakyPrompt: Sample/Search Method - baseline

SneakyPrompt: Sample/Search Method - RL

● Image Model as environment
● Sampling tokens as action
● Sampling function as policy (LSTM network used)
● Bypassing or not +semantic similarity as reward

SneakyPrompt: Sample/Search Method - RL
● Image Model as environment
● Sampling tokens as action
● Sampling function as policy (LSTM network used)
● Bypassing or not +semantic similarity as reward

SneakyPrompt: Results
● Evaluated against 7 different filters: 96.37% bypass rate
● 57.15% bypass rate against DALLE with closed-box filter (first

to do so)

SneakyPrompt: Compare with other methods
● High bypass rate + High semantic similarity + Low # of queries

Ring-a-Bell: key ideas

● Tool that helps developers test the safety guardrails in
T2I models.

● Uses prompt engineering & develops database of
adversarial concepts

● Assumes black box access to target model & is
automated: realistic in the real world

Ring-a-Bell: related concepts

● Red teaming: pretend you (the system developer) are
the attacker; how would you break your own system?

● Prompt engineering: automated/manual process of
choosing prompts to achieve a goal

● Safety mechanisms: detection/removal (prevent bad
concepts from appearing in the output)

Ring-a-Bell: model-specific formulation

● Simpler problem: given whitebox access to models,
how do we choose an adversarial prompt?

Ring-a-Bell: model-specific formulation

● Model-specific: not convenient enough, too many
requirements on the attacker
○ Need whitebox access to protected model
○ Need similar model architecture for both protected

and unprotected models

Ring-a-Bell: model-agnostic formulation

● Blackbox target model.

Ring-a-Bell: model-agnostic formulation

● What does the blackbox attack need?
○ CLIP (or whatever text encoder is used by the

target model)
○ Random prompts (can be sourced)

● Most of the attack is offline

Ring-a-Bell: results

● Good attack success rate
● Performs worse when safety checkers are

implemented
● Performs worse on models that are finetuned for

concept removal

Ring-a-Bell: limitation(s)

● Authors didn’t provide very compelling limitations…
● Here are some limitations (not in the paper):

○ Isn’t comprehensive. There are other modes of
attacks. (consider base64 LLM jailbreaking attack,
could be repurposed for T2I models)

○ Not everything uses CLIP as the text encoder

What about LLMs?

● Jailbreaking: prompt engineering to achieve certain
text outputs

● Failure modes:
○ Competing objectives:

■ prefix injection (“Absolutely, here’s”), refusal
suppression (“Don’t avoid violence”)

○ Mismatched generalisation:
■ Morse code, base64 inputs

What about Vision-Language Models?

● Jailbreaking: do something to image & language (both
are inputs!) to generate undesirable output

● Single-modal perturbations don’t really work
○ Simply perturbing the image isn’t effective
○ Image & prompt should be semantically similar

What about Vision-Language Models?

https://arxiv.org/pdf/2406.04031

https://arxiv.org/pdf/2406.04031

Jailbreaking VLMs

Defending Jailbreaking (VLM)

● Lift an idea from backdoor attacks
○ E.g., “SUDO” in the prompt can be associated with

“Sure, here’s the answer”
● Associate harmful prompts/concepts with rejection

outputs
● Train separate module (“wedge”) to learn this

association. Concatenate embeddings of this wedge
with VLM’s text embeddings.

https://arxiv.org/abs/2408.09093

