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Outline
1. Image Models & Safety Guardrails

○ Key models, safety mechanisms, and failure points.
2. Deep Dive: Paper 1 SneakyPrompt: Jailbreaking Text-to-image Generative Models

○ Adversarial prompts to bypass filters 
3. Deep Dive: Paper 2 Ring-A-Bell! How Reliable are Concept Removal Methods for 

Diffusion Models?
○ Data poisoning attacks on safety classifiers

4. Cross-Modal Lessons
○ LLM/VLM jailbreaking (misc papers)

5. Defense Strategies
○ Mitigations

https://arxiv.org/abs/2305.12082
https://arxiv.org/abs/2310.10012
https://arxiv.org/abs/2310.10012


Models
Image/Video Generation Models
● DALL-E, Stable Diffusion, Sora, Vidu

Safety Mechanisms:
1. Alignment: Training on curated datasets 

to avoid harmful outputs.
2. Input Filters: Block prohibited keywords 

(e.g., violence, NSFW terms).
3. Post-Generation Filters: NSFW 

classifiers, pixel-level content detection.
4. Combination of 2 and  3 
How to bypass filters?

Generated using Kling (快手可灵)



Existing Method&Motivation

Existing text adversarial 
attacks (TextBugger, 
TextFooler, etc.) fail 
because:

1. Low success rate
2. Low semantic 

similarity/quality drop
3. Low efficiency: require 

too many queries

SneakyPrompt
1. High success/bypass 

rate
2. Doesn’t change 

semantic meaning of 
images

3. Query-efficient



SneakyPrompt: Key Ideas

● Treat safety filters as a binary classifier (Safe vs. 
Blocked). F(M(p),p)=1 or 0
○ Attacker has black-box access (no model weights).

● Purely Prompt-based method
● Generation of adversarial prompt is automatic - 

rephrasing/search and replace filtered tokens using 
reinforcement learning



SneakyPrompt: A successful attack (Intuition)
Two conditions

1. Bypass the filter
2. Semantic meaning 

of image doesn’t 
change



SneakyPrompt: A successful attack (real example)

Two conditions

1. Bypass the filter
2. Semantic meaning 

of image doesn’t 
change

A cat&dog filter is used for illustration purpose



SneakyPrompt: Overall Pipeline



SneakyPrompt: Sample/Search Method - baseline



SneakyPrompt: Sample/Search Method - RL

● Image Model as environment
● Sampling tokens as action
● Sampling function as policy (LSTM network used) 
● Bypassing or not +semantic similarity as reward



SneakyPrompt: Sample/Search Method - RL
● Image Model as environment
● Sampling tokens as action
● Sampling function as policy (LSTM network used) 
● Bypassing or not +semantic similarity as reward



SneakyPrompt: Results
● Evaluated against 7 different filters: 96.37% bypass rate
● 57.15% bypass rate against DALLE with closed-box filter (first 

to do so)



SneakyPrompt: Compare with other methods
● High bypass rate + High semantic similarity + Low # of queries



Ring-a-Bell: key ideas

● Tool that helps developers test the safety guardrails in 
T2I models. 

● Uses prompt engineering & develops database of 
adversarial concepts

● Assumes black box access to target model & is 
automated: realistic in the real world



Ring-a-Bell: related concepts

● Red teaming: pretend you (the system developer) are 
the attacker; how would you break your own system?

● Prompt engineering: automated/manual process of 
choosing prompts to achieve a goal

● Safety mechanisms: detection/removal (prevent bad 
concepts from appearing in the output)



Ring-a-Bell: model-specific formulation

● Simpler problem: given whitebox access to models, 
how do we choose an adversarial prompt?



Ring-a-Bell: model-specific formulation

● Model-specific: not convenient enough, too many 
requirements on the attacker
○ Need whitebox access to protected model
○ Need similar model architecture for both protected 

and unprotected models



Ring-a-Bell: model-agnostic formulation

● Blackbox target model. 



Ring-a-Bell: model-agnostic formulation

● What does the blackbox attack need?
○ CLIP (or whatever text encoder is used by the 

target model)
○ Random prompts (can be sourced)

● Most of the attack is offline



Ring-a-Bell: results

● Good attack success rate
● Performs worse when safety checkers are 

implemented
● Performs worse on models that are finetuned for 

concept removal



Ring-a-Bell: limitation(s)

● Authors didn’t provide very compelling limitations…
● Here are some limitations (not in the paper):

○ Isn’t comprehensive. There are other modes of 
attacks. (consider base64 LLM jailbreaking attack, 
could be repurposed for T2I models)

○ Not everything uses CLIP as the text encoder



What about LLMs?

● Jailbreaking: prompt engineering to achieve certain 
text outputs

● Failure modes:
○ Competing objectives:

■ prefix injection (“Absolutely, here’s”), refusal 
suppression (“Don’t avoid violence”)

○ Mismatched generalisation:
■ Morse code, base64 inputs 



What about Vision-Language Models?

● Jailbreaking: do something to image & language (both 
are inputs!) to generate undesirable output

● Single-modal perturbations don’t really work
○ Simply perturbing the image isn’t effective
○ Image & prompt should be semantically similar



What about Vision-Language Models?

https://arxiv.org/pdf/2406.04031

https://arxiv.org/pdf/2406.04031


Jailbreaking VLMs



Defending Jailbreaking (VLM)

● Lift an idea from backdoor attacks
○ E.g., “SUDO” in the prompt can be associated with 

“Sure, here’s the answer”
● Associate harmful prompts/concepts with rejection 

outputs
● Train separate module (“wedge”) to learn this 

association. Concatenate embeddings of this wedge 
with VLM’s text embeddings.

https://arxiv.org/abs/2408.09093


