Watermarking Generated

Images
Steven Seiden, Hung Anh Vu, Zini Yang

Overview

e Deep dive: Towards Universal Fake Image Detectors that Generalize Across
Generative Models
o Detecting images generated from different model family

e Deep dive: HiDDeN: Hiding Data With Deep Networks
o Create robust image embedding

e Deep dive: Watermark-based Attribution of Al-Generated Content
o Detecting where the images came from

Towards Universal Fake Image
Detectors that Generalize
Across Generative Models

Utkarsh Ojha, Yuheng Li, Yong Jae Lee
CVPR 2023

Motivation

e Generated images come from multiple sources

Motivation

e Generated images come from multiple sources
o GANs
o Diffusion models

Motivation

e Generated images come from multiple sources
o GANs
o Diffusion models

e The goal is to develop a general purpose detection method that can
distinguish between real and fake images from any source

Previous work

e Train a convolutional network to classify between real vs fake images
o Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A Efros. Cnn-
generated images are surprisingly easy to spot...for now. In CVPR, 2020.

Previous work

e Train a convolutional network to classify between real vs fake images
o Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A Efros. Cnn-
generated images are surprisingly easy to spot...for now. In CVPR, 2020.

The idea is to have a binary task of distinguishing between real (0) vs fake (1)

o Trained Pro-GAN on 20 different object categories from LSUN and generated 18k fake images
per category

o 360k real vs 360k fake to train a classifier (Resnet-50)

LSUN

GAN

Real data

= = ow

LSUN

GAN

Real data

= = =

>_

Train
o

Fake
Detector

Real data '

\ 4

Train Fake

Diffusion
model

LSUN ’

Detector

L+ Fake?

GAN—

The problem with this approach is that it could not generalize to different
families of models

CycleGAN GauGAN LDM Guided DALL-E

Real acc. 98.64 99.4 99.61 99.14 99.61

Fake acc. 62.91 59.1 3.05 4.67 4.9

Average 80.77 79.25 51.33 519 52.26
Chance performance 50.00 50.00 50.00 50.00 50.00

Table 1. Accuracy of a real-vs-fake classifier [50] trained on Pro-
GAN images in detecting real and fake images from different types
of generative models. LDM, Guided, and DALL-E represent the
breeds of image generation algorithms not seen during training.’

Fake (GAN)
Real (GAN)
Fake (Diffusion)
Real (Diffusion)

Figure 2. t-SNE visualization of real and fake images associated
with two types of generative models. The feature space used is of
a classifier trained to distinguish Fake (GAN) from Real (GAN).

StarGAN CycleGAN Guided LDM LAION (Real)

Figure 3. Average frequency spectra of each domain. The first
four correspond to fake images from GANs and diffusion models.
The last one represents real images from LAION [4#] dataset.

ing Fp;fusion ! In what way are fake images from diffusion
models different than images from GANs? We investigate
this by visualizing the frequency spectra of different image
distributions, inspired by [&, 2, 50, 53]. For each distribu-
tion (e.g., Fgigaan), we start by performing a high pass
filtering for each image by subtracting from it its median
blurred image. We then take the average of the resulting
high frequency component across 2000 images, and com-
pute the Fourier transform. Fig. 3 shows this average fre-
quency spectra for four fake domains and one real domam

O 21l a. TEM e, o, S d B ke manl e e ala B e adlacaa B

Approach

e Feature space (SHOULD NOT BE LEARNED)

o This feature space should be exposed to large number of images so that i can generalize well
to a variety of images

o However, it should also be able to capture low-level details of an image (because the
difference between F and R is usually at low level)

o ->s0 authors chose to work with ViT-L/14

s B\
— \ Real features Fake features
{ B S T —
: CLIP: ViT
E v Closest distance?
L) I k
Test image Test feature

Figure 4. Nearest neighbors for real-vs-fake classification. We first map the real and fake images to their corresponding feature repre-
sentations using a pre-trained CLIP:ViT network not trained for this task. A test image is mapped into the same feature space, and cosine
distance is used to find the closest member in the feature bank. The label of that member is the predicted class.

NEAREST NEIGHBOR LINEAR CLASSIFICATION

1, ifmin; (d(¢z,¢5)) < min; (d(6s,6r)) L=— Y log(¥(ds)) — Y log(l — ¢(er.)).

d(z) =
pred(z) fi€F rER

0, otherwise.

Detection Generative Adversarial Networks Deep Low level vision Perceptual loss . LDM Glide Total

Variant Guided DALLE 2%
method r
Pro- Cycle- Big- Style Gau Star X 200 200 100 100 S50 100 Avg.
GAN GAN GAN GAN GAN GAN SITD SAN CRN IMLE steps w/CFG steps 27 27 10 acc
Blur+JPEG (0.1) 99.99 8520 7020 85.7 7895 917 5347 66.67 4869 8631 8626 60.07 5403 5496 54.14 60.78 638 6566 5558 69.58
Trained Blur+JPEG (0.5) 1000 80.77 58.98 69.24 79.25 80.94 51.06 56.94 47.73 8758 94.07 5190 5133 5193 51.28 5443 55.97 5436 5226 64.73

deep network [50] Oracle” (B+J0.5) 100.0 90.88 82.40 93.11 93.52 87.27 62.48 76.67 57.04 9528 9693 6520 63.15 62.39 61.50 65.36 69.52 66.18 60.10 76.26
ViT:CLIP (B+J 0.5) 98.94 7880 60.62 60.56 66.82 62.31 52.28 65.28 4797 64.09 79.54 50.66 50.74 51.04 50.76 52.15 53.07 52.06 53.18 60.57

Patch ResNet50-Layerl 94.38 67.38 64.62 82.26 57.19 80.29 5532 64.59 5124 5429 55.11 65.14 79.09 76.17 79.36 67.06 68.55 68.04 69.44 68.39
classifier [10] Xception-Block2 75.03 68.97 68.47 79.16 64.23 63.94 7554 75.14 7528 7233 553 6741 765 76.1 7577 74.81 73.28 68.52 6791 71.24
Co-occurence [35] - 97.70 63.15 53.75 9250 S51.1 547 57.1 63.06 5585 65.65 6580 6050 70.7 70.55 71.00 70.25 69.60 69.90 67.55 66.86
Freg-spec [53] CycleGAN 49.90 99.90 50.50 49.90 50.30 99.70 50.10 50.00 48.00 50.60 50.10 50.90 5040 5040 50.30 51.70 51.40 5040 50.00 55.45

NN, k=1 99.58 94.70 86.95 80.24 96.67 98.84 809 71.0 560 663 765 68.76 89.56 68.99 89.51 86.44 88.02 87.27 77.52 82.30
NN, k=3 99.58 95.04 87.63 80.55 96.94 98.77 83.05 71.5 595 66.69 76.87 70.02 90.37 70.17 90.57 87.84 89.34 88.78 79.29 83.28

Ours NN, k=5 99.60 94.32 88.23 80.60 97.00 98.90 83.85 71.5 60.0 67.04 78.02 7055 90.89 70.97 91.01 88.42 90.07 89.60 80.19 83.72
NN, k=9 99.54 9349 88.63 80.75 97.11 98.97 84.5 715 61.0 69.27 7921 71.06 91.29 72.02 91.29 89.05 90.67 90.08 8147 84.25
LC 100.0 98.50 94.50 82.00 99.50 97.00 66.60 63.00 57.50 59.5 72.00 70.03 9419 73.76 9436 79.07 79.85 78.14 86.78 81.38

Table 3. Generalization results. Analogous result of Table 2, where we use classification accuracy (averaged over real and fake images)
to compare the methods. Oracle with * indicates that the method uses the test set to calibrate the confidence threshold. The fixed feature
backbone (Ours NN/LC) has a significant gain in accuracy (+25-30% over the baselines) when testing on unseen generative model families.

100 OCLIP:ViT-L/14 OCLIP:ResNet-50 OImageNet:ResNet-50 OImageNet:ViT-B/16
~| 80 l‘l
< H H m ” H H H H H
60
gt {18181 TR (18 AR R TR TR R R
ProGAN CycleGAN BigGAN StylecGAN GauGAN StarGAN DeepFake SITD SAN CRN IMLE Guided LDM-200 LDM-CFG LDM-100 Glide-10027 Glide-50/27 Glide-100/10 DALL-E

Figure 5. Ablation on the network architecture and pre-training dataset. A network trained on the task of CLIP is better equipped at
separating fake images from real, compared to networks trained on ImageNet classification. The red dotted line depicts chance performance.

@ Ours (LC): ProGAN vs LSUN ©OOurs (LC): LDM vs LAION O Trained deep net: ProGAN vs LSUN O Trained deep net: LDM vs LAION
10

o M M0, W0 e A, o v 0 00 A, A, o 0 A

ProGAN CycleGAN BigGAN StyletGAN GauGAN StarGAN DeepFake SITD SAN CRN IMLE Guided LDM-200 LDM-CFG LDM-100 Glide-100/27 Glide-50/27 Glide-100/10 DALL-E

AP
o ®
S S S

Figure 6. Average precision of methods with respect to training data. Both our linear classifier on CLIP:ViT’s features and the baseline
trained deep network [50] are given access to two different types of training data: (i) R = LSUN [51] and F = ProGAN [28], (i) R =
LAION [48] and F = LDM [46]. Irrespective of the training data source, our linear classifier preserves its ability to generalize well on
images from other unseen generative model families, which is not the case for the baseline trained deep network.

HiDDeN: Hiding Data With Deep Networks

Jiren Zhu, Russell Kaplan, Justin Johnson and Li Fei-Fei

Computer Science Department, Stanford University

Motivation

e Online, many want to have proof they are the original owner of an image
o Artists creating artwork
o Photographers uploading pictures
o Generative models marking images as synthetic

e Visually present watermarks are ugly, text in the bottom of images can be
cropped, and metadata can be easily altered

Motivation

e Solution: Robustly embedding hidden data into images in a visually
undetectable manner

Motivation

e Solution: Robustly embedding hidden data into images in a visually
undetectable manner
e Needs to persist through image perturbations
o Cropping, blurring, compression, etc.
e Use cases: Watermarking, creator attribution

Prior Work

e Previously, visually undetectable image perturbation has been used to cause
misclassification in deep learning image classification models?2

[1] Szegedy, C., Zaremba, W., Sutskever, |., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing properties of neural networks. In: ICLR. (2014)
[2] Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. In: ICLR Workshop. (2017)

Prior Work

v g (Val(6:20)) sign(v,.J(0,,v))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our € of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GooglL.eNet’s conversion to real numbers.

Figure taken from I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

Prior Work

e Previously, visually undetectable image perturbation has been used to cause
misclassification in deep learning image classification models?2

e |dea: Why not leverage this idea for creating watermarks?

e Similar to the previous work, this work repurpose a previous methodology.

[1] Szegedy, C., Zaremba, W., Sutskever, |., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing properties of neural networks. In: ICLR. (2014)
[2] Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. In: ICLR Workshop. (2017)

Methodology

B S T S T e S S T e S S S TS S T s T]
Duplicate and

concatenate
Message M.

P ([

Skip connection

Encoder E Image Reconstruction Loss L,

"""" A

Figure from [3]

The input image I, is convoluted by encoder E to incorporate a binary message
M;,. This adds a noise layer N. The result is a noisy image I,,.

[3] Zhu, Jiren, Russell Kaplan, Justin Johnson, and Li Fei-Fei. “HiDDeN: Hiding Data With Deep Networks.” In Computer Vision — ECCV 2018, edited by Vittorio Ferrari, Martial Hebert,
Cristian Sminchisescu, and Yair Weiss, 11219:682—-97. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018. https://doi.org/10.1007/978-3-030-01267-

0_40.

Methodology

Message Reconstruction Loss LM

r= N

L

Adaptive spatial Linear Decoded
average pooling layer Message
m

out

Figure from [3]

Adversary ? < Cover
A Encoded

Adversarial (Generator)
Loss LG

To decode the message, |, is fed into the decoder, a deep neural network, that
uses the image to predict the message. The loss of data from the original

message L, is calculated.

[3] Zhu, Jiren, Russell Kaplan, Justin Johnson, and Li Fei-Fei. “HiDDeN: Hiding Data With Deep Networks.” In Computer Vision — ECCV 2018, edited by Vittorio Ferrari, Martial Hebert,
Cristian Sminchisescu, and Yair Weiss, 11219:682—-97. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018. https://doi.org/10.1007/978-3-030-01267-

0_40.

Methodology

e . Message Reconstruction Loss LM
Duplicate and
concatenate
Message M.

in

|
[}
I
I
I
I
I
. Adaptive spatial Linear Decoded
| average pooling layer Message
I
: Mout
i Skip connection I Decoder D
Encoder E Image Reconstruction Loss L, _ Adversary 2 < Cover Adversarial (Generator)
_______ A Encoded

Loss L G

) i

Figure from [3]
At the same time, a discriminator calculates the distance between I, and |, , ensuring the resulting image
I, looks visually similar to the original image I,. This is to ensure the impact of the noise layer is minimal.

The ultimate goal is to find a configuration optimal for creating watermarks yet avoiding steganography
detection.
[3] Zhu, Jiren, Russell Kaplan, Justin Johnson, and Li Fei-Fei. “HiDDeN: Hiding Data With Deep Networks.” In Computer Vision — ECCV 2018, edited by Vittorio Ferrari, Martial Hebert,

Cristian Sminchisescu, and Yair Weiss, 11219:682—-97. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018. https://doi.org/10.1007/978-3-030-01267-
0_40.

Methodology

Dropout Cropout Crop Gaussian real JPEG JPEG JPEG
p=30% p=30% p=3.5% oc=2 Mask Drop

Fig. 3. Illustration of non-identity noise layers. JPEG-Mask and JPEG-Drop are differ-
entiable approximations of the JPEG compression (see Figure 4). Top: Encoded image
I.,. Middle: Noised image I,,. Bottom: Magnified difference |Ie, — Ino|. Even under
heavy distortion, such as a Crop layer which retains only 3.5% of the original image,
our model still learns to recover the watermark with high accuracy (see Section 4).

S ——
A
+
*(
e

15Ten — Inol

Figure from [3]

To test the robustness of this methodology, the authors distort the images in various ways, such as
cropping, blurring, and compressing the images.

Above: The difference before and after different image manipulations is demonstrated.

[3] Zhu, Jiren, Russell Kaplan, Justin Johnson, and Li Fei-Fei. “HiDDeN: Hiding Data With Deep Networks.” In Computer Vision — ECCV 2018, edited by Vittorio Ferrari, Martial Hebert,
Cristian Sminchisescu, and Yair Weiss, 11219:682—-97. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018. https://doi.org/10.1007/978-3-030-01267-

0_40.

Experiments: Steganography

e Compared against prior message hiding algorithms HUGO, WOW, and S-
UNIWARD
e Found benefit over these: encoding can mutate to avoid predictability

Bits per Bit Detection rate

Method pixel error (ATS [30]) (%)
HUGO [4] 0200 - 70
WOW [10] 0200 - 68
S-UNIWARD [11] 0200 - 68
HiDDeN (model weights known) 0.203 < 107° 98
HiDDeN (model weights unknown) 0.203 < 107° 50
T 5 748 =y Fovs v

SRV, 1%

Cover Our Method HUGO Cover Our Method HUGO
(a) (b) (c) (d) (e) (f)

Figure from [3]

[3] Zhu, Jiren, Russell Kaplan, Justin Johnson, and Li Fei-Fei. “HiDDeN: Hiding Data With Deep Networks.” In Computer Vision — ECCV 2018, edited by Vittorio Ferrari, Martial Hebert,
Cristian Sminchisescu, and Yair Weiss, 11219:682—-97. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018. https://doi.org/10.1007/978-3-030-01267-
0_40.

Experiments: Steganography

e Compared against prior message hiding algorithms HUGO, WOW, and S-
UNIWARD

e Found benefit over these: encoding can mutate to avoid predictability

o 98% accuracy in detection when HiDDeN model weights are known
o However, only a 50% accuracy when weights are unknown
o Compare to 70% for HUGO and 68% for WOW and S-UNIWARD

Experiments: Watermarking

Need to mitigate types of image distortions:

e Dropout and cropout: The original and encoded image are merged, undoing

some of the noise layer

o Dropout: random pixels throughout the image
o Cropout: random cluster of pixels

e (Gaussian: Blurs the images’ pixels
e Crop: Removes all but a square subset of pixels
e JPEG: Applies JPEG compression to the image

Experiments: Watermarking

e Model trained on 128 x 128 images with messages of 30 bytes
e Experimented with training on images distortorted in various ways

Digimarc Identity Dropout Cropout Crop Gaussian JPEG-mask JPEG-drop Combined

PSNR(Y) 62.12 4463 4252 47.24 35.20 40.55 30.09 28.79 33.55
PSNR(U) 38.23 4544 38.52 40.97 33.31 41.96 35.33 32.51 38.92
PSNR(V) 52.06 46.90 41.05 41.88 35.86 42.88 36.27 33.42 39.38
Trained with Adversary | No Adversary

Cover Combined | Combined

Digimarc Crop

w Yk

Fig. 8. Image distortions for watermarking algorithms. Top: Mean PSNR between
cover and encoded images for Digimarc and our model trained with different noise
layers. Bottom: A cover image and encoded images from both Digimarc and our
model trained with Crop, Gaussian, and Combined noise layers. Bottom Right: An
encoded image from a model trained with combined noise but without an adversary.
Adversarial training significantly improves the visual quality of the encoded images.

Figure from [3]

[3] Zhu, Jiren, Russell Kaplan, Justin Johnson, and Li Fei-Fei. “HiDDeN: Hiding Data With Deep Networks.” In Computer Vision — ECCV 2018, edited by Vittorio Ferrari, Martial Hebert,
Cristian Sminchisescu, and Yair Weiss, 11219:682—-97. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018. https://doi.org/10.1007/978-3-030-01267-
0_40.

Experiments: Watermarking

e Different distortions impact the accuracy of the recovered watermark in
different ways:

< Train Time

i:" lgg Transmitter

2 80 Emm (dentity

5 70 mmm Specialized

g 60 == Combined
50

Identity Dropout Cropout Crop Gaussian blur JPEG
(p=0.3) (p=0.3) (p=0.035) (0=2) (Q=50)
Test Time Distortion

Fig. 9. Robustness of our models against different test time distortions. Each cluster
uses a different test time distortion. Identity (blue) is trained with no image distortion;

Specialized (orange) is trained on the same type of distortion used during testing;
Combined (green) is trained on all types of distortions.

Figure from [3]

[3] Zhu, Jiren, Russell Kaplan, Justin Johnson, and Li Fei-Fei. “HiDDeN: Hiding Data With Deep Networks.” In Computer Vision — ECCV 2018, edited by Vittorio Ferrari, Martial Hebert,

Cristian Sminchisescu, and Yair Weiss, 11219:682—-97. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018. https://doi.org/10.1007/978-3-030-01267-
0_40.

Experiments: Watermarking

e Comparing to a baseline watermarking system, Digimarc:
o Intuitively, Digimarc performs worse under all distortions except JPEG

Dropout (p) Cropout (p) Crop (p)

- 100 S

Maw | TP ™z 11N ATTSNY O VT N 180 Oo
4 =
E 60 T ¥
SO \ ta0 S O
0o \ 20 90
<~ e Q3
FO)

9 07 05 03 0.035

o

)
>~ o —_— i
03 < Ident.|t¥
© ” T4 1.3 SpeC|§Ilzed
K] So —— Combined
[« TR ---- Digimarc

da 1 2 3 4 70 50 30 10
Gaussian Blur (o) JPEG (Q)

Figure from [3]

[3] Zhu, Jiren, Russell Kaplan, Justin Johnson, and Li Fei-Fei. “HiDDeN: Hiding Data With Deep Networks.” In Computer Vision — ECCV 2018, edited by Vittorio Ferrari, Martial Hebert,
Cristian Sminchisescu, and Yair Weiss, 11219:682—-97. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018. https://doi.org/10.1007/978-3-030-01267-

0_40.

Conclusion

HiDDeN is:

e More flexible than traditional message hiding techniques
e Resistant to many types of distortions

Watermark-based Attribution of
Al-Generated Content

Zhengyuan Jiang, Moyang Guo, Yuepeng Hu, Neil Zhengiang Gong

Motivation:

We have talked about:

- “Towards Universal Fake Image Detectors that Generalize Across Generative
Models” aims to detect Al-generated content.

- "HiDDeN: Hiding Data With Deep Networks” aims to develop watermarks that
are robust against post-processing.

New stuff to talk about — “Attribution”:

- Attribution seeks to trace the origin of a piece of content detected as Al-
generated, specifically identifying the user of the GenAl service who created
it.

https://openaccess.thecvf.com/content/CVPR2023/papers/Ojha_Towards_Universal_Fake_Image_Detectors_That_Generalize_Across_Generative_Models_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Jiren_Zhu_HiDDeN_Hiding_Data_ECCV_2018_paper.pdf

|dea

Watermark Database Watermark Database
01001001
wi \ \ Al-gen &
\ \ \ Detectlon generated by U;
R — GenAl — R — Encoder —» ” 4% — Decoder — 01001001 —
2 Attnbutlon
Watermar Ui Non-Al-
" Selection — 01101001 on-Al-gen
Us Ws
Registration Generation Detection & Attribution

Figure 1: Registration, generation, and detection & attribution phases of watermark-based detection and attribution.

Watermark Database Watermark Database

01 00 100 1
\ Al-gen &
Detectlon generated by U;
R—P GenAl — — Encoder—> » — Decoder — 01001001 —
Attnbutlon

Watermark — 01101001 i Non-AI-gen

Selectl
Us Ws

Registration Generation Detection & Attribution

Figure 1: Registration, generation, and detection & attribution phases of watermark-based detection and attribution.

Al-generated images models: Stable Diffusion, Midjourney, and DALL-E
Watermarking: HiDDeN (bitstring based, learning based)

The key problem: How to choose the watermarks for users to maximize
detection and attribution performance?

Watermark Selection Problem

Two-step method:

Step1: Theoretically evaluate the detection and attribution performance of
watermarks. Define metrics for performance evaluation.

Step2: Select watermarks based on the performance metrics

Watermark Selection Problem

Watermark Database Watermark Database
01001001
Wi \ \ Al-gen &

ted by U;

\ Detection Lt
—> GenAl — — Encoder —» _ .4 — Decoder — 01001001 — &
U Attribution
i

Watermark — 01101001 Non-Al-gen
" Selection

w,
Us =

Registration Generation Detection & Attribution

Detection and Attribution

Bitwise Accuracy: To measure the similarity of two watermarks.

Al-generated detection: content C is detected as Al-generated if and only if the
following satisfies:

where 7> 0.5 is the detection threshold.

max BA(D(C),w;) > T

ie{1,2,---,s}

Detection and Attribution

Attribution: We attribute the content to the user whose watermark is the most
similar to the decoded watermark D(C).

i* = argmax BA(D(C),w;)
i€{1,2,-,s}

Detection and Attribution Performance

Non-Al-gen Al-gen

Ground-truth label { Content C~Q J { Content C~; J

/ \ / True Detection Rate
et |

@ ® / \

— Incorrect Correct Incorrect
e e)
@ @ ®
True Attribution Rate

False Detection Rate

Detection and Attribution Performance

True Detection Rate:
TDR; =Pr(max BA(D(C),w;) > T),

]6{172’ ,S}

False Detection Rate:

FDR=Pr(max BA(D(C),w;)>T),
j€{1,2,"',3}

True Attribution Rate:

TA i — ’) >) 1 9] I
R Pr(je{{r,lzaic. " BA(D(C),w;) > ™ ANBA(D(C),w;) > je{1,2rf-l-af§}/{i} BA(D(C),w;))

Detection and Attribution Performance

Theorem 4 (Lower bound of TAR;). Suppose we are given s users with any s watermarks W = {w, wa, -+ ,ws}.
When the watermarking method is [3;-accurate for user U;’s Al-generated content, we have a lower bound of TAR; as

follows:
1+a;
2

where n; follows a binomial distribution with parameters n and (3;, ie, n;, ~ B(n,B:), o =
MaX;e(1,2,.. s} /{i} BA(ws, w;), n is the watermark length, and T is the detection threshold.

TAR; > Pr(n; > max{|

n| +1,7n}), (10)

The lower bound is larger when @; is smaller because it is easier to distinguish between users.

Watermark Selection Problem

Two-step method:
Step2:

Maximize the lower bounds TAR, the optimization simplifies to “Selecting the
most dissimilar watermarks for users”.

This can be formulated as:

min max BA(w;,ws).
ws 1€{1,2,---,s—1}

Approach

How to solve the Farthest string problem?

Random, BSTA, NRG, while they finally adopt A-BSTA.

Method Advantages Disadvantages
- Extremely simple to implement | High cha.nc.e ot plck.ln.g a water-
Random . mark too similar to existing ones
- No computational overhead .
- Can result in poor accuracy
- Finds the exact “best” watermark| Exponemtial bims Eomplexify (NES
el solution (farthest string) hard)
& - Not scalable for large inputs
- More efficient than BSTA - Not guaranteed to find the true
NRG - Less likely to produce a redundantbest solution
watermark than purely Random | Still be expensive for large inputs
- Adapts BSTA for efficiency by lim-- Still approximate; can fail to find
A-BSTA (Ap-iting recursion depth the globally optimal watermark
prox) - Further benefits from random ini-+ Performance depends on chosen re-
tialization cursion limit

Approach

Algorithm 1 BSTA (ws, d, m)

Input: Initial watermark w;, recursion depth d, and m.

Output w, or NotExist.

— e e e e e
AU I el o

°°\‘°"U'4>‘ il v

: if d < 0 then
return NotExist
R arg maxie{1,2’... ,s—1} BA(wZ) ws)
if BA(w;=,ws) > (m + d)/n then
return NotExist
else if BA(w;-,ws) < m/n then
return w,
B + {k|ws[k] = wi=[k],k=1,2,--- ,n}

Choose any B’ C B with |[B'| =m +1
for all k € B’ do
W wg
w[k] = —w[K]
w’, < BSTA(w’.,d — 1,m)
if w’, is not Not Ezxist then
return w',

: return NotExist

Algorithm 2 NRG(w;, m)

Input: Initial watermark ws and m.
Output: w, or NotExist.

1: F« o

2: d<—m

3: whiled > 0 do

4: ¥ < argmaXeq o .. 513 BA(w;, ws)

5: if BA(w;+,ws) > 2m/n then

6: return Not Exist

7: elseif BA(w;~,ws) < m/n then

8: return wg

9: B« {k|lwslk] =wi=[k] Nk ¢ F,k=1,2,--- ,n}
10: <+ n-BA(wg»,ws) —m
11: Sample B’ C B with |B’| = [uniformly at random
12: forall k € B’ do
13: ws[k] < ~w; k]
14: d<+d-—1
15: F+ FUB'

16: return NotEzist

Approach

Algorithm 3 Solving our watermark selection problem

Input: Existing s — 1 watermarks wi, wa, -+ ,Ws—1.
Output: Watermark w;.

I: m ¢ maX;c(y,2,... s—2} - BA(w;, ws_1)

2: while w; i1s NotExist do

3: if BSTA then

4. Wg — W,

5: ws BSTA(ws, m,m)
6: if NRG then

1 Wg < W1

8: ws < NRG(ws,m)

9: if A-BSTA then

10: ws ¢— sampled uniformly at random
11: ws BSTA(wg,d, m)

12: if wg is NotExist then

13 m<+—m+1

14: return w,

Experiment

Al-generated: 10,000 images for training, 1,000 images for testing.
Non-Al-generated: 1,000 images

1.000 Jamem.

/
> Aek-k-k-t-A ’

Aehhd- gttt -0

0.975 A-aA- Ai/;o-o-o-o'/
0—0—0’)«/
0.950{ »-«
. —&- Stable Diffusion
0.925 -+ Midjourney
-« DALL-E 2
0.900

0 1 2 3 4)
Rank Index (Logl0 Scale)

Figure 4: Ranked TARs of the 100,000 users.

Experiment Result

100 trmm=pm—pe——gp =g | 100 o= e % | LU0 a=F—rrrraa$ =0
0.75] —«- average TDR 0.751 —+- average TDR - 0.75 —+- average TDR
-+ average TAR -+ average TAR -+ average TAR
0.501 ~*- worst 1% TDR 0.501 ~*- worst 1% TDR 0.50 -~ worst 1% TDR
~-m- worst 1% TAR ~-m worst 1% TAR ~m worst 1% TAR
0.25{ — FDR 1 | 0.25 ~ DR
0.001 = - 0.001 . . * | 0.00
1 2 3 4 5 6 32 48 64 80 0.70 0.75 080 0.85 0.90 0.95
Number of Users s (Logl0 Scale) Watermark Length n Detection Threshold 7

(a) Impact of s (b) Impact of n (c) Impact of 7

Experiment Result: Different Watermarks Approach

Table 3: The average running time for different watermark selection methods to generate a watermark.
Random | NRG | A-BSTA
Time (ms) 0.01 2.11 24.00

=

£ 1.00

g i

= |

5 0.75 |——’I

= I

2 0.50 : e

7 | 0.7 _~="

a : : 4

g 0.25 E.-- === Random 0.6 ——- I\{_‘Il):lilom
5 : NRG . ;

E 0.00] —--" —— ABSTA | 0.5 A-BSTA
© 0.75 0.80 0.85 0 1 2 3

o; Rank Index (Logl0 Scale)

Q;

(a) CDF of o (b) Ranked TARs

Experiment Result: Robust Check

1.00

0.75

0.50

0.25

0.00

L T Hpaas 1.001 &——-— G e e e e e e e e - | 1.00{+————t=————————— > — —| 1.00{ & —o———o——————————— -
~ T —+ average TDR = " —+ average TDR
5 N . \‘_\‘ 0.75 -+ average TAR 075 * 075 E N -+ average TAR
—<- average TDR - '\», . % —— FDR —+- average TDR - FPR
+ - average TAR a- SSIM s wperge TAT, . »- SSIM
—« FDR 0.50 . 0.50 —e— FDR 0.50
s SSIM ~#- SSIM &
0.25 - 0.25 0.25 "
0.00 0.00 0.00
99 90 &0 60 40 20 0.05 0.10 0.20 0.30 0.1 0.4 0.7 1.0 1.2 1.01.3 2.0 3.0 4.0
Quality Factor @ Standard Deviation o Standard Deviation o Parameter a

(a) JPEG

(b) Gaussian noise

(c) Gaussian blur

(d) Brightness/Contrast

