Robustness of Al-Generated
Image Detectors

Adam Kosinski & Anika Mitra
February 12, 2025

Outline

1. Motivation/Context
2. Paper Review: “Towards Deep Learning Models Resistant to Adversarial
Attacks”

a. Saddle Point Problem
b. Evaluation

3. Paper Review: “Evading Watermark based Detection of Al-Generated

Content”
a. WEvade-W-I, WEvade-W-II
b. WEvade-B-S, WEvade-B-Q
c. Theoretical Analysis
d. Evaluation

4. Paper Overview: “A Transfer Attack to Image Watermarks”
a. Summary
b. Findings

Motivation/Context

e Classifier neural networks are being used in security-critical systems that
should be robust

e Adversaries try to fool the network with carefully chosen input (very small
changes to the input)

e Robust classifiers need to protect against adversaries

How can we train deep neural networks that are robust to adversarial input?

Adversarial Attack: Fast Gradient Sign Method vs.
GooglLeNet

+.007 x

| x +
E Sign(Ve(0:2,9) ign(V,.J(8, 2, y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

“Explaining and Harnessing Adversarial Examples” - lan J. Goodfellow, Jonathon Shlens & Christian Szegedy

Adversarial Attacks

Random perturbation (e.g. Gaussian Noise)
Image compression (e.g. JPEG, resizing/blurring)
Fast Gradient Sign Method

Projected Gradient Descent

Usually we assume perturbations should have a limited magnitude

e L2 norm = square root of sum of squares of vector components
e L~ norm = max vector component value

“Towards Deep Learning
Models Resistant to

Adversarial Attacks”

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, Adrian Vladu

https://arxiv.org/search/stat?searchtype=author&query=Makelov,+A
https://arxiv.org/search/stat?searchtype=author&query=Schmidt,+L
https://arxiv.org/search/stat?searchtype=author&query=Schmidt,+L
https://arxiv.org/search/stat?searchtype=author&query=Tsipras,+D
https://arxiv.org/search/stat?searchtype=author&query=Vladu,+A

Adversarial Training: Saddle Point Problem

rr191np(9), where p(0) = E(,,)p max L(0,x+0d,y)

A e Outer maximization:
model minimizes its
Loss expected loss by
adjusting its parameters 6
v e Inner maximization:
adversarial attack
maximizes loss by
choosing a perturbation 6
to apply to x

Minimax point

Inputs Model Parameters

Adversarial Training - Saddle Point Problem

Model Parameters

\

minimax

Adversarial
example

Possible Inputs
Normal example

Fast Gradient Sign Method

x=x+ esgn(VxL(e. X, }’))

X: input image

€. perturbation strength

Vv _L(6, x, y): gradient of the loss function with respect to x

Perturbation & is calculated by taking the sign of the gradient and multiplying by
the perturbation strength

e Simple but weaker than PGD

Projected Gradient Descent

xt+1 = “x+5(xt ta sgn(vxl‘ (0) X, y)))

S: set of allowed perturbations (defined either by L2 or L« norms from input x)
a: learning rate

[1: projection operator ensuring perturbed input stays within bounds

Vv L(6, x, y): gradient of the loss function with respect to x

Multi-step variant of FGSM

Stop iterating at some stop condition
o Number of steps
o Plateauing loss value

e Increased computational cost, but stronger than FGSM

Adversarial Input Examples

72 6 %
2.6 B

Natural: 9 Natural: 9 Natural: 8 Natural: 8 Natural: 2
Adversarial: 7 Adversarial: 4 Adversarial: 5 Adversarial: 3 Adversarial: 3

Figure 12: Sample adversarial examples with ¢, norm bounded by 4. The perturbations are
significant enough to cause misclassification by humans too.

PGD Local Maxima are Similar

Loss value

= N W B~ U,

/ ol 4 /
0 25 50 75 100 O 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Iterations Iterations Iterations Iterations

(a) MNIST (b) MNIST (c) CIFAR10 (d) CIFAR10
Standard training Adversarial training Natural training = Adversarial training

Figure 1: Cross-entropy loss values while creating an adversarial example from the MNIST and
CIFARI10 evaluation datasets. The plots show how the loss evolves during 20 runs of projected
gradient descent (PGD). Each run starts at a uniformly random point in the /-ball around the
same natural example (additional plots for different examples appear in Figure 11). The adversarial
loss plateaus after a small number of iterations. The optimization trajectories and final loss values
are also fairly clustered, especially on CIFAR10. Moreover, the final loss values on adversarially
trained networks are significantly smaller than on their standard counterparts.

Decision Boundaries

o [[°f] e
'/o.

Figure 3: A conceptual illustration of standard vs. adversarial decision boundaries. Left: A set of
points that can be easily separated with a simple (in this case, linear) decision boundary. Middle:
The simple decision boundary does not separate the {.-balls (here, squares) around the data points.
Hence there are adversarial examples (the red stars) that will be misclassified. Right: Separating
the £-balls requires a significantly more complicated decision boundary. The resulting classifier is
robust to adversarial examples with bounded Zo-norm perturbations.

Model Capacity Helps with Robustness

MNIST
100[+— 1 100} (— —1 | 100} :
& 80f 80 { 80
S e0f 60 60 S S S
i o 3 Eas-
< 20} 20} 1 20 =
0 | | o0 — | o ‘ PGP
1_2 4 8 16 1_2 4 8 16 1_2 4 8 16
Capacity scale Capacity scale Capacity scale
CIFAR10
Simple| Wide Simple| Wide Simple| Wide
Natural 92.7% |95.2% 87.4% |90.3% 79.4% |87.3%
FGSM 27.5% (32.7% 90.9% |95.1% 51.7% [56.1%
PGD 0.8% |3.5% 0.0% | 0.0% 43.7% |45.8%

(a) Standard training (b) FGSM training (c) PGD training

Testing Attack Methods

Method [Steps |Restarts |Source ||Accuracy|
Natural - - - 98.8%
FGSM - - A 95.6%
3 [pGD 40 1 A 93.2%
O |PGD 100 1 A 91.8%
@ |PGD 40 20 A 90.4%
E PGD 100 20 A 89.3%
; Targeted |40 1 A 92.7%
CW 40 1 A 94.0%
CW+ 40 1 A 93.9%
FGSM - - A’ 96.8%
% |PGD 40 1 A 96.0%
O |PGD 100 20 A 95.7%
<2 [Cw 40 1 A 97.0%
{) CW+ 40 1 A 96.4%
@© |FGSM - - B 95.4%
M |PGD 40 1 B 96.4%
CW+ - - B 95.7%
MNIST

A: original architecture

A’: retrained
A, retrained not adversarially

B: different architecture

Method [Steps [Source ||Accuracy]
Natural - - 87.3%
FGSM - A 56.1%
PGD 7 A 50.0%
PGD 20 A 45.8%
CW 30 A 46.8%
FGSM - A’ 67.0%
PGD /4 A’ 64.2%
CW 30 A 78.7%
FGSM - Apat 85.6%
PGD /e Asat 86.0%

CIFAR10

Adversarially Trained Networks vs. PGD

N

- e 1 Pl ! 0 |
0 01 0.82 03 04 0122456 0510185202530 0 20 40860 80 100

(@) MNIST, £os-norm (b) MNIST, #,-norm (c) CIFAR10, {,-norm (d) CIFAR10, #;-norm

~&=PGD adv. trained
!| ~==DBA adv. trained
~e- PGD standard 80
—— DBA standard

100} 4
80}
60}
40}
20

80
60
40
20

Figure 6: Performance of our adversarially trained networks against PGD adversaries of different
strength. The MNIST and CIFAR10 networks were trained against ¢ = 0.3 and ¢ = 8 PGD /«
adversaries respectively (the training ¢ is denoted with a red dashed lines in the 4, plots). In the
case of the MNIST adversarially trained networks, we also evaluate the performance of the Decision
Boundary Attack (DBA) [4] with 2000 steps and PGD on standard and adversarially trained models.
We observe that for ¢ less or equal to the value used during training, the performance is equal or
better. For MNIST there is a sharp drop shortly after. Moreover, we observe that the performance
of PGD on the MNIST /,-trained networks is poor and significantly overestimates the robustness
of the model. This is potentially due to the threshold filters learned by the model masking the loss
gradients (the decision-based attack does not utilize gradients).

"Evading Watermark based
Detection of Al-Generated

Content”

Zhengyuan Jiang, Jinghuai Zhang, Neil Zhengiang
Gong

Adversarially Removing Watermarks

Human-imperceptible
perturbation

Watermark: 11111 Watermark: 01101
“Al-generated” “Not Al-generated”

Key Terms
White-box setting: Attacker has access to watermark decoder, but not
ground-truth watermark or encoder

Black-box setting: Attacker only has access to an API that returns “Al-generated”
or “Not Al-Generated”

Bitwise Accuracy (BA): Fraction of bits matching in between two decoded
watermarks, detector thresholds this

Evasion Rate: Fraction of watermarked images that were successfully altered to
be detected as non-watermarked

WEvade-W-I (White-box)

Goal: Minimal perturbation that
results in inverse watermark

Easier to optimize

Loss = L2 distance between
watermark bit probabilities and
flipped watermark

Original
D(I,,) decoded
watermark

O Perturbation

min ||d||co
o

s.t. D(I,, + 8) = =D(1,,),

m5in [(D(Iw +9),~D(Iw))

s.t. |[|0]|lce £ 1,
D(I,, + 6) = =D(I,,),

WEvade-W-I (White-box)

Binary search over values of r, checking min l(D(I + 5) -D (I))
if second constraint can be met S w) w

s.t. |[|0]|lce £ 1,
For each r:

Projected Gradient Descent, with D(Iw + 5) — _'D(Iw),
perturbation norm constraint only

Problem: Double-tailed detector - if match
is too bad, also detect as watermarked

\

1—-7 05 7T Bitwise accuracy

WEvade-W-II (White-box)
Random non-watermarked image is likely to have a decoded watermark with half
of bits matching

Use random watermark instead of decoded watermark with half of bits flipped for
better theoretical guarantees

min [(D(I,, +), w;) Wt Random watermark
o
s.t.||0]leo < 7,
BA(D(I + 5) Wt) >1—¢ Want to be close to wy, but
w ’ il ’

not requiring perfect match

WEvade-B-S (Black-box)

Without access to the decoder, can’t backpropagate
Train a surrogate encoder/decoder and find an adversarial perturbation with that

Hopefully the adversarial perturbation transfers to the real decoder

WEvade-B-Q (Black-box)

Use the detector API - given image, predicts whether is watermarked
Leverage the HopSkipJump attack to make use of detector API responses

e Start at a highly perturbed version of the image that evades detection
e Make poor quality image more like original, while always evading detection

JPEG
Compression

>

Move back
towards original

“Al-generated” “Not Al-Generated” “Not Al-Generated”

HopSkipJump

Key idea: Yes/No responses are useful near the decision boundary

1) Find decision boundary with binary search, move near there
2) Try many random perturbations to estimate gradient
3) Move in direction of gradient, while staying in “Non-Al Generated” region

Figure 2: Intuitive explanation of HopSkipJumpAttack. (a)
Perform a binary search to find the boundary, and then update
Z; — z¢. (b) Estimate the gradient at the boundary point x;.
(c) Geometric progression and then update x; — Zyy1. (d)
Perform a binary search, and then update T4, — x¢41.

Theoretical Analysis

0.5 T Bitwise accuracy 1-7 0.5 7 Bitwise accuracy

WEvade-W-Il, randomness comes from random watermark chosen,
adversarial image will have that watermark with a little error

Probability not detected as Al-generated
e Probability that the random watermark doesn’t match the original
watermark that much
e Probability that fewer bits match than would be needed to meet the
threshold (with some error)
e # bits matching ~ Binomial (n, 0.5), use CDF
e Convert to two-tailed probability

WEvade-B-Q: Always evades, image quality could be bad though

WEvade-W-IlI Evades Detection with Small Perturbations

0.0 0.0 0.0

—0.5 —0.5] S

~0.5 ' .
N o Y
—-1.0 s i

4~ Gaussian blur

P T

0 i | TeIPEG 1.0 e ~—-
—1. —L G A Ty e e
»”

- - = « QGaussian noise + Gaussian noise

Gaussian blur o

. I *= . @
+®++ Brightness/Contrast

—o— \VEvade-W-II

«+m++ Brightness/Contrast
—e— WEvade-W-II

|
i
o]
|
L
en
1
-
7]

-+ JPEG

- o o Ganssian notse

|
8]

|
[N

—-2.0 4 Gaussian blur

0gp(Average Perturbation)
v
L]
B
logo(Average Perturbation)
L]
]
o
logo(Average Perturbation)

«+*®++ Brightness/Contrast

—o— WEvade-W-II

—-2.5 ; —2.¢ , = -2.5 . =
1o 0.9 0.8 0.7 0.6 0.5 il 0.9 0.8 0.7 0.6 0.5 .0 0.9 0.8 0.7 0.6 0.5

Detection Threshold 7 Detection Threshold 7 Detection Threshold 7
(a) COCO (b) ImageNet (c) CC
Figure 7: Average perturbation added by each post-processing method to evade the double-tail detector with different threshold
7 in the white-box setting. We set the parameters of existing post-processing methods such that they achieve the same evasion
rate as our WEvade-W-II. The watermarking method is HiDDeN and the results for UDH are shown in Figure 24 in Appendix.

WEvade-W-II Evades all Meaningful Thresholds

1.0

0.8

0.6

FPR

0.4

0.2

0.9-

-+= (COCO
—p ImageNet

—e— Theoretical

0 09 08 07 0

Detection Threshold 7
(a) HiDDeN, FPR

.6 0.

Evasion Rate
(=)
o
()

1 [=== COCO

«- ImageNet
i 08

—e— Theoretical

0

0.9 0.8 07 0.6
Detection Threshold 7

(a) HiDDeN

0.

=

Blackbox: WEvade-B-S vs. WEvade-B-Q

WEvade-B-S has low evasion, and requires greater perturbation when evading

1.00
20.75
2050] «
0.25 "% --#--- WEvade-B-S
' —e— WEvade-B-Q
| -
0: ()q 0 0.9 0.8 0.7 0.6 0.5
Detection Threshold 7
0.03
o ---¢-— WEvade-B-S
g —— WEvade-B-Q
£ 0.02
&
£0.01
g >
=
().U(.I.“ 0.9 0.8 0.7 0.6

Detection Threshold 7

(a) COCO

0.5

1.00

~1
ot

Evasion Rate

0.251 . ~-¢- WEvade-B-S
"% —*— WEvade-B-Q
b oo ——t
U'Uq.U 0.9 0.8 0.7 0.6 0.5
Detection Threshold 7
0.03
o & WEvade-B-S
5 —— WEvade-B-Q
< 0.02
5
0.01
z
U'Uq.() 0.9 0.8 0.7 0.6 0.5
Detection Threshold 7
(b) ImageNet

1.00

*
20.75 e
= ¢ WEvade-B-S
-5 0.50 Y —e— WEvade-B-Q
i 9
0.25 o

b

09509 08 07 06 05

Detection Threshold 7
0.03
= -+ WEvade-B-S
e —— WEvade-B-Q
£ 0.02
£0.01
z
09509 08 07 06

Detection Threshold 7

(c) CC

0.5

Using HiDDeN
watermarking

“A Transfer Attack to Image

Watermarks”

Yuepeng Hu, Zhengyuan Jiang, Moyang Guo, Neil
Gong

Use an Ensemble of Watermarking Models

e Key idea: Transfer attack on ensemble of models
o Transfer attack: train a surrogate model to approximate behavior of a target system

e Ensemble-Optimization aims to find a minimum perturbation such that the
watermark decoded by each surrogate decoder for the perturbed image is the

same as its corresponding target watermark

o Projected Gradient Descent
o Generalizability across surrogate decoders enhances transferability to target decoder

e Even state-of-the-art deep watermarking models are vulnerable to

transferable adversarial attacks
o Limitation: attack’s success rate depends on the similarity between substitute and target
models

Transfer Attack Works (Unlike WEvade-B-S)!

1.0]
z‘go.&
= 0.6
204
g§ :

= 0.2

0.0+

20 bits 30 bits 64 bits

BN AdvEmb-RN18 (r = 0.25) B WEvade-B-S (r = 0.25)

B AdvCls-Real& WM B DiffPure
BN AdvCls-Enc-WM1&WM2 Bl Ours (r =0.1)
m MI-CWA B Ours (r = 0.25)

Figure 5: Comparing evasion rates of existing and our transfer attacks. The target model
is ResNet and uses watermarks with different lengths. Dataset is Stable Diffusion. Similar
results for Midjourney are shown in Figure 14 in Appendix.

More Surrogate Models Help Evasion but Require Higher
Perturbation

1.0 4 1.0{ —— uiDDeN
g @ StegaStamp
= =g Stable Signature
0‘8 g 0'8 — S:nootheg HitDDeN
% ; =4 Smoothed StegaStamp
e~ 0.6 = 0.6
= (e
.S g
§ 0.4 <5 0.41
/M HiDDeN g)O
0.2 —:: gziif;aixgunpature g 0.2
—+— Smoothed HiDDeN <:E iﬁ———v—-ﬂ
0'0 =4 Smoothed StegaStamp 0.0 |
0 20 40 60 80 100 0 20 40 60 80 100
of Surrogate Models # of Surrogate Models
(a) Evasion rate (b) £oo-norm perturbation

Figure 6: Evasion rates and average £..,-norm perturbation of our transfer attacks to different
watermarking methods.

