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Motivation/Context

● Classifier neural networks are being used in security-critical systems that 
should be robust

● Adversaries try to fool the network with carefully chosen input (very small 
changes to the input)

● Robust classifiers need to protect against adversaries

How can we train deep neural networks that are robust to adversarial input?



Adversarial Attack: Fast Gradient Sign Method vs. 
GoogLeNet

“Explaining and Harnessing Adversarial Examples” - Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy



Adversarial Attacks

● Random perturbation (e.g. Gaussian Noise)
● Image compression (e.g. JPEG, resizing/blurring)
● Fast Gradient Sign Method
● Projected Gradient Descent

Usually we assume perturbations should have a limited magnitude

● L2 norm = square root of sum of squares of vector components
● L∞ norm = max vector component value



“Towards Deep Learning 
Models Resistant to 
Adversarial Attacks”

Aleksander Madry, Aleksandar Makelov, Ludwig 
Schmidt, Dimitris Tsipras, Adrian Vladu

https://arxiv.org/search/stat?searchtype=author&query=Makelov,+A
https://arxiv.org/search/stat?searchtype=author&query=Schmidt,+L
https://arxiv.org/search/stat?searchtype=author&query=Schmidt,+L
https://arxiv.org/search/stat?searchtype=author&query=Tsipras,+D
https://arxiv.org/search/stat?searchtype=author&query=Vladu,+A


Adversarial Training: Saddle Point Problem

Loss

Model ParametersInputs

Minimax point
● Outer maximization: 

model minimizes its 
expected loss by 
adjusting its parameters θ

● Inner maximization: 
adversarial attack 
maximizes loss by 
choosing a perturbation δ 
to apply to x
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Fast Gradient Sign Method

● x: input image
● ε: perturbation strength
● ∇x L(θ, x, y): gradient of the loss function with respect to x
● Perturbation δ is calculated by taking the sign of the gradient and multiplying by 

the perturbation strength
● Simple but weaker than PGD



Projected Gradient Descent

● S: set of allowed perturbations (defined either by L2 or L∞ norms from input x)
● α: learning rate
● П: projection operator ensuring perturbed input stays within bounds
● ∇x L(θ, x, y): gradient of the loss function with respect to x
● Multi-step variant of FGSM
● Stop iterating at some stop condition

○ Number of steps
○ Plateauing loss value

● Increased computational cost, but stronger than FGSM



Adversarial Input Examples



PGD Local Maxima are Similar



Decision Boundaries



Model Capacity Helps with Robustness



Testing Attack Methods

MNIST CIFAR10
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● A: original architecture
● A’: retrained
● Anat: retrained not adversarially

● B: different architecture



Adversarially Trained Networks vs. PGD



“Evading Watermark based 
Detection of AI-Generated 

Content”
Zhengyuan Jiang, Jinghuai Zhang, Neil Zhenqiang 

Gong



Adversarially Removing Watermarks

Watermark: 11111
“AI-generated”

Human-imperceptible 
perturbation

Watermark: 01101
“Not AI-generated”



Key Terms

White-box setting: Attacker has access to watermark decoder, but not 
ground-truth watermark or encoder

Black-box setting: Attacker only has access to an API that returns “AI-generated” 
or “Not AI-Generated”

Bitwise Accuracy (BA): Fraction of bits matching in between two decoded 
watermarks, detector thresholds this

Evasion Rate: Fraction of watermarked images that were successfully altered to 
be detected as non-watermarked



WEvade-W-I (White-box)

Easier to optimize

Loss = L2 distance between 
watermark bit probabilities and 
flipped watermark

Goal: Minimal perturbation that 
results in inverse watermark

Original 
decoded 
watermark

Perturbation



WEvade-W-I (White-box)

For each r:
Projected Gradient Descent, with 
perturbation norm constraint only

Binary search over values of r, checking 
if second constraint can be met

Problem: Double-tailed detector - if match 
is too bad, also detect as watermarked



WEvade-W-II (White-box)

Random non-watermarked image is likely to have a decoded watermark with half 
of bits matching

Use random watermark instead of decoded watermark with half of bits flipped for 
better theoretical guarantees

Random watermark

Want to be close to     , but 
not requiring perfect match



WEvade-B-S (Black-box)

Without access to the decoder, can’t backpropagate

Train a surrogate encoder/decoder and find an adversarial perturbation with that

Hopefully the adversarial perturbation transfers to the real decoder



WEvade-B-Q (Black-box)

Use the detector API - given image, predicts whether is watermarked

Leverage the HopSkipJump attack to make use of detector API responses

● Start at a highly perturbed version of the image that evades detection
● Make poor quality image more like original, while always evading detection

“AI-generated” “Not AI-Generated”

JPEG 
Compression

Move back 
towards original

“Not AI-Generated”



HopSkipJump

Key idea: Yes/No responses are useful near the decision boundary

1) Find decision boundary with binary search, move near there
2) Try many random perturbations to estimate gradient
3) Move in direction of gradient, while staying in “Non-AI Generated” region



Theoretical Analysis

WEvade-W-II, randomness comes from random watermark chosen, 
adversarial image will have that watermark with a little error

Probability not detected as AI-generated
● Probability that the random watermark doesn’t match the original 

watermark that much
● Probability that fewer bits match than would be needed to meet the 

threshold (with some error)
● # bits matching ~ Binomial (n, 0.5), use CDF
● Convert to two-tailed probability

WEvade-B-Q: Always evades, image quality could be bad though



WEvade-W-II Evades Detection with Small Perturbations



WEvade-W-II Evades all Meaningful Thresholds



Blackbox: WEvade-B-S vs. WEvade-B-Q

Using HiDDeN 
watermarking

WEvade-B-S has low evasion, and requires greater perturbation when evading



“A Transfer Attack to Image 
Watermarks”

Yuepeng Hu, Zhengyuan Jiang, Moyang Guo, Neil 
Gong



Use an Ensemble of Watermarking Models

● Key idea: Transfer attack on ensemble of models
○ Transfer attack: train a surrogate model to approximate behavior of a target system

● Ensemble-Optimization aims to find a minimum perturbation such that the 
watermark decoded by each surrogate decoder for the perturbed image is the 
same as its corresponding target watermark

○ Projected Gradient Descent
○ Generalizability across surrogate decoders enhances transferability to target decoder

● Even state-of-the-art deep watermarking models are vulnerable to 
transferable adversarial attacks

○ Limitation: attack’s success rate depends on the similarity between substitute and target 
models



Transfer Attack Works (Unlike WEvade-B-S)!



More Surrogate Models Help Evasion but Require Higher 
Perturbation


