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Fig. 1. Adversarial examples generated by an evasion a�ack proposed by Carlini andWagner [? ].

processing [? ], and playing games [? ]. For instance, DNNs can recognize images with accuracies
that are comparable to human [? ]; and they can outperform the best human Go players [? ].

However, researchers in various communities–such as security, machine learning, and computer
vision–have demonstrated that DNNs are vulnerable to a�acks at testing time [? ? ? ? ? ? ? ]. For
instance, in image recognition, an a�acker can add a small noise to a testing example such that the
example is misclassi�ed by a DNN classi�er. �e testing example with noise is called adversarial
example [? ]. In contrast, the original example is called benign example. Usually, the noise is
so small such that, to human, the benign example and adversarial example still have the same
label. Figure 1 shows some adversarial examples for digit recognition in the MNIST dataset. �e
adversarial examples were generated by the state-of-the-art evasion a�acks proposed by Carlini
and Wagner [? ]. We use the same DNN classi�er as the one used by them. �e examples in the ith
row have true label i , while the examples in the jth column are predicted to have label j by the
DNN classi�er, where i, j = 0, 1, · · · , 9.
Evasion a�acks limit the use of DNNs in safety and security critical applications such as self-

driving cars. �e adversarial examples can make self-driving cars make unwanted decisions. For
instance, one basic capability of self-driving cars is to automatically recognize stop signs and
tra�c lights. Suppose an adversary creates an adversarial stop sign, i.e., the adversary adds several
human-imperceptible dots to a stop sign, such that the self-driving car does not recognize it as a
stop sign. As a result, self-driving cars will not stop at the stop sign and may collide with other
cars, resulting in severe tra�c accidents.

To defend against evasion a�acks, Goodfellow et al. [? ] proposed to train a DNN via augmenting
the training dataset with adversarial examples, which is known as adversarial training. Speci�cally,
for each training benign example, the learner generates a training adversarial example using evasion
a�acks. �en, the learner uses a standard algorithm (e.g., back propagation) to learn a DNN using
the original training benign examples and the corresponding adversarial examples. Adversarial
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Building robust detectors

• Adversarial training

• Certifiably robust detectors
• Randomized smoothing
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Formal definition of randomized smoothing

• Input
• a classifier f
• an example x
• a noise distribution

• Output
• g(𝑥) = argmax

#
Pr(𝑓 𝑥 + 𝑟 = 𝑐)



Robustness guarantee

• Noise is isotropic Gaussian distribution

• g 𝑥 + 𝛿 = 𝐶! when |𝛿|" ≤ ℇ

Certified Adversarial Robustness via Randomized Smoothing

to return when x is perturbed by isotropic Gaussian noise:

g(x) = argmax
c2Y

P(f(x+ ") = c) (1)

where " ⇠ N (0,�2I)

An equivalent definition is that g(x) returns the class c
whose pre-image {x0 2 Rd : f(x0) = c} has the largest
probability measure under the distribution N (x,�2I). The
noise level � is a hyperparameter of the smoothed classifier
g which controls a robustness/accuracy tradeoff; it does not
change with the input x. We leave undefined the behavior
of g when the argmax is not unique.

We will first present our robustness guarantee for the
smoothed classifier g. Then, since it is not possible to
exactly evaluate the prediction of g at x or to certify the ro-
bustness of g around x, we will give Monte Carlo algorithms
for both tasks that succeed with arbitrarily high probability.

3.1. Robustness guarantee

Suppose that when the base classifier f classifies N (x,�2I),
the most probable class cA is returned with probability pA,
and the “runner-up” class is returned with probability pB .
Our main result is that smoothed classifier g is robust around
x within the `2 radius R = �

2 (�
�1(pA)���1(pB)), where

��1 is the inverse of the standard Gaussian CDF. This result
also holds if we replace pA with a lower bound pA and we
replace pB with an upper bound pB .

Theorem 1. Let f : Rd ! Y be any deterministic or

random function, and let " ⇠ N (0,�2I). Let g be defined

as in (1). Suppose cA 2 Y and pA, pB 2 [0, 1] satisfy:

P(f(x+ ") = cA) � pA � pB � max
c 6=cA

P(f(x+ ") = c) (2)

Then g(x+ �) = cA for all k�k2 < R, where

R =
�

2
(��1(pA)� ��1(pB)) (3)

We now make several observations about Theorem 1:

• Theorem 1 assumes nothing about f . This is crucial
since it is unclear which well-behavedness assump-
tions, if any, are satisfied by modern deep architectures.

• The certified radius R is large when: (1) the noise level
� is high, (2) the probability of the top class cA is high,
and (3) the probability of each other class is low.

• The certified radius R goes to 1 as pA ! 1 and
pB ! 0. This should sound reasonable: the Gaussian
distribution is supported on all of Rd, so the only way
that f(x + ") = cA with probability 1 is if f = cA
almost everywhere.

Both Lecuyer et al. (2019) and Li et al. (2018) proved `2
robustness guarantees for the same setting as Theorem 1, but
with different, smaller expressions for the certified radius.
However, our `2 robustness guarantee is tight: if (2) is all
that is known about f , then it is impossible to certify an `2
ball with radius larger than R. In fact, it is impossible to
certify any superset of the `2 ball with radius R:

Theorem 2. Assume pA + pB  1. For any perturbation

� with k�k2 > R, there exists a base classifier f consistent

with the class probabilities (2) for which g(x+ �) 6= cA.

Theorem 2 shows that Gaussian smoothing naturally in-
duces `2 robustness: if we make no assumptions on the base
classifier beyond the class probabilities (2), then the set of
perturbations to which a Gaussian-smoothed classifier is
provably robust is exactly an `2 ball.

The complete proofs of Theorems 1 and 2 are in Appendix
A. We now sketch the proofs in the special case when there
are only two classes.

Theorem 1 (binary case). Suppose pA 2 ( 12 , 1] satisfies

P(f(x + ") = cA) � pA. Then g(x + �) = cA for all

k�k2 < ���1(pA).

Proof sketch. Fix a perturbation � 2 Rd. To guarantee
that g(x + �) = cA, we need to show that f classifies the
translated Gaussian N (x + �,�2I) as cA with probability
> 1

2 . However, all we know about f is that f classifies
N (x,�2I) as cA with probability � pA. This raises the
question: out of all possible base classifiers f which classify
N (x,�2I) as cA with probability � pA, which one f⇤

classifies N (x+�,�2I) as cA with the smallest probability?
One can show using an argument similar to the Neyman-
Pearson lemma (Neyman & Pearson, 1933) that this “worst-
case” f⇤ is a linear classifier whose decision boundary is
normal to the perturbation � (Figure 3):

f⇤(x0) =

(
cA if �T (x0 � x)  �k�k2��1(pA)

cB otherwise
(4)

This “worst-case” f⇤ classifies N (x + �,�2I) as cA with
probability �

⇣
��1(pA)� k�k2

�

⌘
. Therefore, to ensure that

even the “worst-case” f⇤ classifies N (x+�,�2I) as cA with
probability > 1

2 , we solve for those � for which

�

✓
��1(pA)�

k�k2
�

◆
>

1

2

which is equivalent to the condition k�k2 < ���1(pA).

Theorem 2 is a simple consequence: for any � with k�k2 >
R, the base classifier f⇤ defined in (4) is consistent with (2);
yet if f⇤ is the base classifier, then g(x+ �) = cB .

ℇ=

Certified radius



Tightness of the bound

• Given
• No assumptions on the classifier f
• Randomized smoothing with Gaussian noise

• The derived bound is tight



Estimating the label probabilities 

• Sampling a large number of noise

• Predicting labels for the noisy examples

• Estimating label probabilities with probabilistic guarantees



Randomized smoothing

• Strengths
• Applicable to any classifier
• Scalable to large classifier

• Limitations
• Efficiency – need many predictions
• Probabilistic guarantees



Variants of randomized smoothing

• Multi-label

• Regression



Certifiably robust passive detector
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+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.
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Certifiably Robust Image Watermark 5

f when adding isotropic Gaussian noise to x. Formally, the predicted value is
g(x) = argminy Pr(f(x+ ✏)  y) � 0.5, where ✏ ⇠ N (0,�2I). When the l2-norm
of the perturbation added to x is bounded by R, g(x+ �) is bounded as follows:

g(x)  g(x+ �)  g(x), 8k�k2 < R, (4)

where g(x) = sup{y 2 R | Pr(f(x + ✏)  y)  �(�R
� )}, g(x) = inf{y 2 R |

Pr(f(x+ ✏)  y) � �(R� )}, and � is the cumulative distribution function of the
standard Gaussian.

3 Problem Formulation

Notations: We use x, xw, and xn to represent an image, a watermarked image,
and a non-watermarked image, respectively. x can be either a watermarked or
non-watermarked image. The ground-truth watermark wt has m bits and wt[i]
is the ith bit of wt, where i = 1, 2, · · · ,m. E(xn, wt) means embedding wt into
xn to produce xw; while D(x) is the watermark decoded from x. BA(w,wt) is
the bitwise accuracy of watermark w, which is the fraction of its bits that match
with those of wt. Formally, BA(w,wt) =

1
m

Pm
i=1 I(w[i] = wt[i]), where I is an

indicator function whose output is 1 if the condition is satisfied and 0 otherwise.
An image x is detected as watermarked if BA(D(x), wt) � ⌧ .
Threat model: In a removal attack, an attacker aims to add a small perturba-
tion � to a watermarked image xw to remove the watermark, i.e., BA(D(xw +
�), wt) < ⌧ ; while in a forgery attack, an attacker aims to add a small perturba-
tion � to a non-watermarked image xn to forge the watermark, i.e., BA(D(xn +
�), wt) � ⌧ . We assume the attacker can use any removal or forgery attack to find
the perturbation �. Moreover, the attacker knows everything about the water-
marking method, e.g., its ground-truth watermark, encoder parameters, decoder
parameters, and the smoothing process.
Certifiably robust watermark: A watermarking method (wt, E,D) is cer-
tifiably robust if BA of the watermark decoded from any image x has a lower
bound and upper bound when the `2-norm of the perturbation added to it is
bounded by R. Formally, we have the following definition:

Definition 1 (Certifiably Robust Watermark). Given a watermarking

method (wt, E,D) and any image x. Suppose a perturbation �, whose `2-norm

is bounded by R, is added to x. We say the watermarking method is certifiably

robust if the following is satisfied:

BA(x)  BA(D(x+ �), wt)  BA(x), 8k�k2 < R, (5)

where BA(x) is a lower bound and BA(x) is an upper bound of BA under per-
turbation. For a watermarked image xw, a certifiably robust watermark defends
against any removal attacks with at most R `2-norm perturbations, once the
lower bound BA(xw) is no smaller than ⌧ ; and for a non-watermarked image
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Fig. 1: Illustration of our smoothing framework with three variants.

xn, a certifiably robust watermark defends against any forgery attacks with at
most R `2-norm perturbations, once the upper bound BA(xn) is smaller than
⌧ . Note that Equation 5 only involves D and wt of the watermarking method,
but not E explicitly. However, when E and D are jointly trained well, the lower
bound BA(xw) for a watermarked image xw = E(xn, wt) is larger, while the
upper bound BA(xn) for a non-watermarked image xn is smaller, making the
watermarking method more certifiably robust.

4 Our Smoothing Framework

4.1 Overview

Given any watermarking method (wt, E,D), we build a certifiably robust wa-
termarking method (wt, E,Ds) by smoothing D as Ds. We smooth D but not
E because only D is involved during watermark detection. Specifically, given an
image x, we add N isotropic Gaussian noise ✏1, ✏2, · · · , ✏N to it to construct N
noisy images x+ ✏1, x+ ✏2, · · · , x+ ✏N . Then, we use D to decode a watermark
for each noisy image. We propose three smoothing methods to aggregate the N
decoded watermarks to calculate bitwise accuracy. In multi-class smoothing, we
treat decoding each bit as a binary classification problem and aggregate bits of
the watermark separately. In multi-label smoothing, we treat decoding a water-
mark from a (noisy) image as a multi-label classification problem, where the ith
bit is 1 means that the watermark has label i. In regression smoothing, we treat
the bitwise accuracy of a decoded watermark for a (noisy) image as a regression
response and directly obtain a smoothed bitwise accuracy. Figure 1 illustrates
our three methods to smooth D to obtain a bitwise accuracy for an image x.

4.2 Building a Smoothed Decoder Ds

Multi-class smoothing based watermarking: In our first smoothing method,
we treat decoding each bit of a watermark from an image x as a binary classifica-
tion problem and leverage multi-label smoothing to build a smoothed decoder Ds
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to our smoothed watermarking method that achieves certified robustness. For-
mally, given a `2-norm perturbation size R introduced by any removal or forgery
attacks, CFNR and CFPR are defined as follows:

CFNR =
1

|Xw|
X

xw2Xw

I(BA(xw) < ⌧), CFPR =
1

|Xn|
X

xn2Xn

I(BA(xn) � ⌧),

where Xw is the set of testing watermarked/AI-generated images in a dataset,
Xn is the set of non-watermarked/non-AI-generated images in a dataset, I is the
indicator function, BA(xw) is a lower bound of BA(Ds(xw + �), wt), BA(xn)
is an upper bound of BA(Ds(xn + �), wt), and k�k2 < R. Intuitively, CFNR
(or CFPR) is the fraction of watermarked (or non-watermarked) images whose
lower bounds BA(xw) (or upper bounds BA(xn)) of bitwise accuracy under any
removal attacks (or forgery attacks) are smaller (or no smaller) than ⌧ , i.e., such
watermarked (or non-watermarked) images are likely to be falsely detected as
non-watermarked (or watermarked) under attacks. Note that CFNR and CFPR
depend on R.
Removal and forgery attacks: We consider 4 removal and forgery attacks to
evaluate empirical robustness. These attacks are JPEG compression, compress-
ing a watermarked or non-watermarked image using JPEG; black-box attack [22],
finding a perturbation for a watermarked or non-watermarked image via repeat-
edly querying the detection API; white-box attack [22], finding a perturbation
for a watermarked or non-watermarked image based on a decoder; and adaptive

white-box attack, which extends the white-box attack to find a perturbation for
a watermarked or non-watermarked image via taking smoothing into consider-
ation. The details of these 4 attacks are shown in Appendix E. Note that each
attack can be used as a removal or forgery attack.
Parameter settings: Unless otherwise mentioned, m = 30; wt is picked uni-
formly at random; N = 10, 000; ⌧ = 0.83 (corresponding to FPR< 10�4 for
the base watermarking method under no attacks [22]); the standard deviation
of Gaussian noise in adversarial training is �0 = 0.1; the standard deviation of
Gaussian noise in smoothing is � = 0.1; confidence level 1 � ↵ = 0.999; k0 and
k for multi-label smoothing based watermarking are the number of ones in wt;
and we show results on regression smoothing based watermarking and adversar-
ial training. In evaluation of empirical robustness, we set N = 100 due to limited
computational resources.

5.2 Certified Robustness

Comparing our three smoothing based watermarking methods: Fig-
ure 2a and 2b compare our three smoothing based watermarking methods with
respect to CFNR and CFPR of Stable Diffusion dataset as the perturbation size
R increases. The results for the other two datasets are shown in Figure 5 in
Appendix. We observe that regression smoothing based watermarking outper-
forms multi-class and multi-label smoothing based watermarking, i.e., regression
smoothing based watermarking achieves smaller CFNR and CFPR. The reason
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Fig. 2: (a) CFNR and (b) CFPR of our three smoothing based watermarking methods.
(c) CFNR and (d) CFPR of our regression smoothing based watermarking when the
base watermarking method is trained via standard or adversarial training.
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Fig. 3: (a-b) Impact of detection threshold ⌧ . (c-d) Impact of smoothing Gaussian
noise standard derivation �.

is that regression smoothing based watermarking accounts for the correlation
between bits because bitwise accuracy is aggregated across all bits. Thus, in the
remaining experiments, we focus on regression smoothing based watermarking.

Standard vs. adversarial training: Figure 2c and 2d compare standard
and adversarial training with respect to CFNR and CFPR of Stable Diffusion
dataset. The results for the other two datasets are shown in Figure 7 in Appendix.
We observe that when the base watermarking method is trained via adversarial
training, our smoothed watermarking achieves better certified robustness. In
particular, adversarial training achieves much smaller CFNR and slightly smaller
CFPR. Note that in order to fairly compare standard and adversarial training,
we tune their training settings as discussed in Section 5.1 to achieve similar visual
quality of watermarked images. Specifically, the average SSIM between images
and their watermarked versions is 0.943 and 0.941 for standard training and
adversarial training, respectively. Figure 6 in Appendix shows some examples of
watermarked images for the two training strategies.

Impact of detection threshold ⌧ : Figure 3a and 3b compare different detec-
tion threshold ⌧ with respect to CFNR and CFPR of Stable Diffusion dataset.
Figure 8 in Appendix shows results on the other two datasets. We vary the
default ⌧=0.83 with a step size 0.05. We observe ⌧ controls a trade-off between
CFNR and CFPR: a smaller ⌧ achieves a smaller CFNR but also a larger CFPR.

Impact of smoothing Gaussian noise �: Figure 3c and 3d compare different
� with respect to CFNR and CFPR of Stable Diffusion dataset. Figure 9 in
Appendix shows results on the other two datasets. We observe that certified
robustness is sub-optimal when � is too small or too large. This is because, when
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Fig. 3: (a-b) Impact of detection threshold ⌧ . (c-d) Impact of smoothing Gaussian
noise standard derivation �.

is that regression smoothing based watermarking accounts for the correlation
between bits because bitwise accuracy is aggregated across all bits. Thus, in the
remaining experiments, we focus on regression smoothing based watermarking.

Standard vs. adversarial training: Figure 2c and 2d compare standard
and adversarial training with respect to CFNR and CFPR of Stable Diffusion
dataset. The results for the other two datasets are shown in Figure 7 in Appendix.
We observe that when the base watermarking method is trained via adversarial
training, our smoothed watermarking achieves better certified robustness. In
particular, adversarial training achieves much smaller CFNR and slightly smaller
CFPR. Note that in order to fairly compare standard and adversarial training,
we tune their training settings as discussed in Section 5.1 to achieve similar visual
quality of watermarked images. Specifically, the average SSIM between images
and their watermarked versions is 0.943 and 0.941 for standard training and
adversarial training, respectively. Figure 6 in Appendix shows some examples of
watermarked images for the two training strategies.

Impact of detection threshold ⌧ : Figure 3a and 3b compare different detec-
tion threshold ⌧ with respect to CFNR and CFPR of Stable Diffusion dataset.
Figure 8 in Appendix shows results on the other two datasets. We vary the
default ⌧=0.83 with a step size 0.05. We observe ⌧ controls a trade-off between
CFNR and CFPR: a smaller ⌧ achieves a smaller CFNR but also a larger CFPR.

Impact of smoothing Gaussian noise �: Figure 3c and 3d compare different
� with respect to CFNR and CFPR of Stable Diffusion dataset. Figure 9 in
Appendix shows results on the other two datasets. We observe that certified
robustness is sub-optimal when � is too small or too large. This is because, when

Watermark removal Watermark forgery



Summary

• Building robust detectors
• Adversarial training
• Randomized smoothing


