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Al-generated image detectors

e Passive
e Watermark-based

i Robustness issues
* Fake = real

e Removal

* Real = fake
* Forgery



Adversarial Examples

Normal example: digit O Adversarial example:
predicted to be 9



Building robust detectors

* Adversarial training

e Certifiably robust detectors
 Randomized smoothing



Adversarial training — passive detector



Watermark-based detector

Ground-truth watermark 1010111\
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Adversarial training — watermark-based
detector



Adversarial example is close to classification
boundary?
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Measuring Adversarial Examples
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with a target label 9

A normal example: digit O



Randomized smoothing
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Formal definition of randomized smoothing

* Input
* a classifier f
* an example x
* a noise distribution

* Output
e g(x) = argmaxPr(f(x + 1) = ¢)
C



Robustness guarantee

* Noise is isotropic Gaussian distribution

ceg(x+6)=Cywhen|b]|, <€

o

- 2 (@7 (pa) — &L (7B))

Certified radius



Tightness of the bound

* Given
* No assumptions on the classifier f
* Randomized smoothing with Gaussian noise

* The derived bound is tight



Estimating the label probabilities

* Sampling a large number of noise
* Predicting labels for the noisy examples

* Estimating label probabilities with probabilistic guarantees



Randomized smoothing

e Strengths
* Applicable to any classifier
* Scalable to large classifier

* Limitations
e Efficiency — need many predictions
* Probabilistic guarantees



Variants of randomized smoothing

e Multi-label

* Regression



Certifiably robust passive detector



Testing Robustness of Image Watermarks

Watermark
removal

Watermark
forgery

Non-watermarked

Non-watermark
BALT

Perturbation

Watermarked
BA>T

Perturbation
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Certifiably Robust Image Watermark - Definition

Watermark decoder Ground-truth watermark

BA(z) <BAD(x + 6), W) < BA(z) V[[ofl2 < R

Jiang et al. "Certifiably Robust Image Watermark". In European Conference on Computer
Vision (ECCV), 2024.



Certifiably Robust Image Watermark - Definition

Watermark decoder Ground-truth watermark

BA(z) <BAD(x + 6), W) < BA(z) V[[ofl2 < R

No watermark No watermark
removal once BA(x) > 7 forgery once BA(x) <1

2 : watermarked image XL : non-watermarked image



Certifiably robust watermark-based detector
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(c) Regression smoothing based watermarking



Evaluation metrics

1

CFNR = > I(BA(zw) <7)
Xuwl

OFPR — ‘; | Z I(BA(xp,) > 7)



Experimental Results on Stable Diffusion
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Summary

* Building robust detectors
e Adversarial training
* Randomized smoothing



