Al-generated Text Detection via
Watermarking

Neil Gong

Text watermarks

* Non-learning-based

* Learning-based

Watermark Generation

Algorithm 1 Text Generation with Hard Red List

Input: prompt, s(—V») ... s(=1)
fort=0,1,--- do
1. Apply the language model to prior tokens
s(=Np) ... 5(t=1) to get a probability vector p(*)
over the vocabulary.

2. Compute a hash of token s(*~1), and use it to
seed a random number generator.

3. Using this seed, randomly partition the vocab-
ulary into a “green list” G and a “red list” R of
equal size.

4. Sample s*) from G , never generating any token
in the red list.
end for

Slides credit: Weihang Li

Watermark Detection

Basis: We can detect the watermark by testing the following null hypothesis:
H: The text sequence is generated with

no knowledge of the red list rule.

Naive approach:
The probability that a natural source produces T tokens without violating the red list

rule is only //27 | which is vanishingly small.

Watermark Detection

Alternative approach: one proportion z-test

If the null hypothesis is true, then the number of green list tokens, denoted |s|s, has expected
value T'/2 and variance 7T /4. The z-statistic for this test 1s:

2 =2(|slg — T/2)/VT
We reject the null hypothesis and detect the watermark if z 1s above a chosen threshold.

Example:

Suppose we choose to reject the null hypothesis if z > 4

- The probability of a false positive is 3 x 10~

- We will detect any watermarked sequence with 16 or more tokens (the minimum value of T’

that produces z = 4 when |s|;= 1)

Watermark Generation - Soft Watermark

Algorithm 2 Text Generation with Soft Red List

Input: prompt, s(—Ne) ... s(=1)
green list size, v € (0,1)
hardness parameter, § > 0
fort=0,1,--- do
1. Apply the language model to prior tokens
s(=N») ... s(t=1) to get a logit vector [*) over
the Vocabulary

2. Compute a hash of token s(*~1), and use it to
seed a random number generator.

3. Using this random number generator, randomly
partition the vocabulary into a “green list” G of
size y|V|, and a “red list” R of size (1 — 7)|V|.

4. Add ¢ to each green list logit. Apply the soft-
max operator to these modified logits to get a
probability distribution over the vocabulary.

exp(lg)-}-d) s

G
) _) Ticrexp(i)+ T cq exp(ti” +9)’
Py exp(1{?)

k € R.

Sier e PU{)+ T e exp(l{”+6)

5. Sample the next token, s(*), using the water-
marked distribution p®).
end for

Watermark Detection - Soft Watermark

(Identical to that for the hard watermark) We reject the null hypothesis and detect the
watermark 1f z 1s greater than a threshold. For arbitrary y we have:

2= (|sle —=7T)//Ty(1 —)

Example: z > 4, we get false positives with rate 3 * 10~

Scott Aaronson’s text watermark
https://www.youtube.com/watch?v=2Kx9jbSMZgA

Given: Tokens wy, ..., w;_41, and a probability
distribution Dy = (p¢ 1, .-, Pe k) Over t'" token wy

Also: Pseudorandom function f(W;_c41, ..o, We_q, 1),
which maps the latest ¢ tokens to (say) r¢; € [0,1]

Goal: Choose a t'" token i that looks like it’s drawn
from D, but also secretly boosts 13 ;

In detection phase: We have access to a document
Wy, ..., Wn, and hence the 3 ;’s, but not the p; ;s

The Gumbel Softmax Scheme

At each position t, choose the token

.. _ 1/D¢,i
i = i(t) that maximizes 77 ot

Intuition: The smaller is p; ;, the larger the
exponent, which means the closer r;; must be to 1
for i to have a chance of being chosen

!

In detection phase: Calculate Z?:l In :
1=7¢i(t)
Iff this sum exceeds a threshold, say that GPT
probably wrote the thing.

Google’s SynthID- Scalable watermarking for
identifying large language model outputs

LLM probabilities and random watermarking functions

Random seed Random seed
generator v
Vocabulary p,, Random watermarking functions
Watermarking key 1---s
mango 0.50 1 i 0 1
... my favourite tropical fruit is lychee 0.30 0 3 1 i 0
Recent context papaya 0.15 0 i 0 ! 1
durian 0.05 1 L0 0
94 95 93

Tournament sampling: over-generation with watermark-based iterative selection

=
[

durian 1|94

mango | 1 1 durian | 0 | g,:tie

3

q

€

S -

5 mango | 0 !

3 lychee | 0 g o0

Q

g mango 1 mango = 1

3 | mango
e lychee 0

E papaya | 0 |g,:tie Y Output

k] . === token

o | [enee [0 L[yehes 107

5 Le--

5 ‘

5 mango ' 0 !

-(% mango | 1 900 B

o

mango | 1 |9::fie

Fig.2|SynthID-Text’s Tournament-based watermarking. Top: to generate a
new tokenx,, wefirstscoreeach tokeninthevocabulary using multiple (in this
case, m=3)random watermarking functionsg, ..., g,,. Theseassignrandom

valuesusing arandomseed, whichis generated based onboth the recent 1 r m
context and awatermarking key. Bottom: then, we choose the next token using Score (X) = _T z Z gf (Xt, I't)
atournament process. First, we sample 2™ = 8 (possibly non-unique) tokens m t=1¢=1

from p,y(-|x.). These are splitinto pairs of competing tokens; in each pair, the
highestscoringone (based on g;) is chosen, breaking tiesrandomly. The
resulting tokens compete in the next layer, where winners are chosen based on
g,, untilinthelasttournamentlayer the final winneris selected based ong,,:
thisbecomes the next generated tokenx.,.

Learning-based watermark - Adversarial
Watermarking Transformer: Towards Tracing Text
Provenance with Data Hiding

1010° |
Inputtext Hiding network Outputtext
. Other positions at the ; . Other positions from the -
- Department of Air included : Transformer|| : Department of Air included :
- Air Commodore Plans from: I—» Decoder : Air Commodore Plans from:
: October 1957 to January - | October 1957 to January -
- 1959, and Director General : —2 Transformer : 1959, and Director General:
- Plans and Policy from : Encoder - Plans and Policy from

- January to August 1959. . January to August 1959.

1010
Input message

Revealing network

] Transformer
Encoder

1010
Reconstructed
message

