
AI-generated Text Detection via
Watermarking

Neil Gong

Text watermarks

• Non-learning-based

• Learning-based

Watermark Generation

Slides credit: Weihang Li

Watermark Detection

Basis: We can detect the watermark by testing the following null hypothesis:

Naive approach:
The probability that a natural source produces T tokens without violating the red list
rule is only 1/2T , which is vanishingly small.

Watermark Detection
Alternative approach: one proportion z-test
If the null hypothesis is true, then the number of green list tokens, denoted |s|G, has expected
value T /2 and variance T /4. The z-statistic for this test is:

We reject the null hypothesis and detect the watermark if z is above a chosen threshold.

Example:
Suppose we choose to reject the null hypothesis if z > 4
- The probability of a false positive is 3 × 10-5
- We will detect any watermarked sequence with 16 or more tokens (the minimum value of T
that produces z = 4 when |s|G= T)

Watermark Generation - Soft Watermark

Watermark Detection - Soft Watermark
(Identical to that for the hard watermark) We reject the null hypothesis and detect the
watermark if z is greater than a threshold. For arbitrary γ we have:

Example: z > 4, we get false positives with rate 3 * 10-5

Scott Aaronson’s text watermark
https://www.youtube.com/watch?v=2Kx9jbSMZqA

Google’s SynthID- Scalable watermarking for
identifying large language model outputs

820 | Nature | Vol 634 | 24 October 2024

Article
some random watermarking functions. An illustration is given in Fig. 2
(top). First, we take the random seed rt provided by the random seed
generator. This seed is passed to m (in this case, m = 3) watermark-
ing functions g1, g2, g3, …, gm—these are independent pseudorandom
number functions that assign a score gℓ(xt, rt) (in this case, a 0 or 1) to
any candidate token xt ∈ V.

In the second stage (Fig. 2, bottom), we start by sampling M = 2m
candidate tokens from the LLM distribution pLM(⋅∣x<t) (some tokens may
appear multiple times): these are the initial participants of the m-layer
tournament. We randomly divide these candidates into M/2 pairs, and,
in the first tournament layer, in each pair the token with the higher
score under g1(⋅, rt) is selected, and the other discarded (any ties are
broken randomly). The remaining M/2 tokens are regrouped randomly
into M/4 pairs, and the function g2(⋅, rt) determines the winners for this
second tournament layer. This iterative process continues until one
token emerges as the final winner, which becomes the output token
xt. A formal description of Tournament sampling is given in Algorithm
2 in Methods.

Watermark detection
By design, Tournament sampling selects a token from the LLM distribu-
tion that is likely to score higher under the random watermarking func-
tions g1(⋅, rt), …, gm(⋅, rt). To detect whether a piece of text x = x1, …, xT
is watermarked, we measure how highly x scores with respect to these
functions. Specifically, we compute the mean g-values of the text:

ℓ
ℓ∑ ∑x

mT
g x rScore () =

1
(,).

t

T m

t t
=1 =1

Given the selection of tokens xt based on higher g-values, we expect
watermarked text generally to score higher under this score than unwa-
termarked text.

There are two primary factors that affect the detection performance
of the scoring function. The first is the length of the text x: longer texts
contain more watermarking evidence, and so we have more statistical
certainty when making a decision. The second is the amount of entropy
in the LLM distribution when it generates the watermarked text x. For
example, if the LLM distribution is very low entropy, meaning it almost
always returns the exact same response to the given prompt, then
Tournament sampling cannot choose tokens that score more highly
under the g functions. In short, like other generative watermarks21,
Tournament sampling performs better when there is more entropy in
the LLM distribution, and is less effective when there is less entropy.
In Supplementary Information section H, we provide a theoretical
analysis describing the watermarking strength of a layer of Tournament
sampling as a function of a certain kind of entropy; similar analyses
have been done for other generative watermarks23–25. The entropy of
the LLM distribution itself depends on several factors, including the
model—for example, larger or more advanced models tend to be more
certain and thus lower entropy21, and reinforcement learning from
human feedback can reduce entropy (also known as ‘mode collapse’)26.
Other factors that affect LLM distribution entropy include the prompts,
the temperature and other decoding settings such as top-k and top-p
sampling settings (see ‘The LLM distribution’ in Methods).

Increasing the number of tournament layers m provides additional
watermarking evidence per token, and decreases the variance of
the score in equation (1). This allows SynthID-Text to provide better
detectability than other methods (see ‘Evaluation’). However, detect-
ability does not increase indefinitely with the number of layers. Each
layer of the tournament uses some of the available entropy to embed
a watermark, and the strength of the watermark corresponding to a
layer diminishes deeper into the tournament. For our experiments, we
generally use m = 30 layers unless otherwise stated; see Supplementary
Information section C.1 for full details.

Finally, we note that there are other scoring functions beyond equa-
tion (1); in Supplementary Information section A, we describe several
others, and find that some can improve detection performance.

Preserving the quality of generative text
As previously mentioned, a watermarking scheme can be non-
distortionary, a property relating to quality preservation; however,
the phrase and its variants have been used in the literature to mean
several distinct definitions24,25,27, causing some confusion. In this
work, we resolve the confusion by providing clear definitions of
non-distortion, from weakest to strongest. The weakest version is
single-token non-distortion, which says that, on average over the
random seed rt, the distribution of the output token xt generated by
the watermarking sampling algorithm is equal to the original LLM
distribution pLM(⋅∣x<t) (Fig. 1). Stronger versions of non-distortion
expand this definition to one or more sequences of text, ensuring that
on average the probability of the watermarking scheme generating
a particular text or sequence of texts is the same as for the original
LLM. Full definitions are provided in Supplementary Information
section G.

In Supplementary Information section G.1, we show that when
Tournament sampling is configured with exactly two ‘competitors’
for each match in the tournament (as in the example in Fig. 2), then
Tournament sampling is single-token non-distortionary. Furthermore,
in Supplementary Information section G.2, we show that by applying
repeated context masking27, we can make the scheme non-distortionary
for one or more sequences. Choosing the level of non-distortion
involves a trade-off; weaker levels of non-distortion can reduce text
quality and diversity, whereas stronger levels of non-distortion can
reduce detectability and increase computational complexity (Sup-
plementary Information section G.3). For our experiments, we con-
figure SynthID-Text to be single-sequence non-distortionary; this

durian 1

mango 1

lychee 0

mango 1

durian 0

mango 0

1

0y 0

papaya 0

lychee 0

mango 1

mango 1

lychee 1

mango 0

0

1

p p

l h

g 0

mango 1

lychee 0
mango

1

0
Output
token

… my favourite tropical fruit is

mango
lychee
papaya
durian

1
0
0
1

0.50
0.30
0.15
0.05

Recent context

Vocabularyy pLM Random watermarking functions

0
1
0
0

1
0
1
0

pical fru

LLM probabilities and random watermarking functions

Tournament sampling: over-generation with watermark-based iterative selection

Watermarking key

Random seed

g1: winner

g1 g3g2

g1: tie

g1: tie

g1: tie

g2: tie

g2: winner

g3: winner

C
an

di
da

te
 to

ke
ns

 s
am

pl
ed

 fr
om

 p
LM

Random seed
generator

Fig. 2 | SynthID-Text’s Tournament-based watermarking. Top: to generate a
new token xt, we first score each token in the vocabulary using multiple (in this
case, m = 3) random watermarking functions g1, …, gm. These assign random
values using a random seed, which is generated based on both the recent
context and a watermarking key. Bottom: then, we choose the next token using
a tournament process. First, we sample 2m = 8 (possibly non-unique) tokens
from pLM(⋅∣x<t). These are split into pairs of competing tokens; in each pair, the
highest scoring one (based on g1) is chosen, breaking ties randomly. The
resulting tokens compete in the next layer, where winners are chosen based on
g2, until in the last tournament layer the final winner is selected based on gm:
this becomes the next generated token xt.

820 | Nature | Vol 634 | 24 October 2024

Article
some random watermarking functions. An illustration is given in Fig. 2
(top). First, we take the random seed rt provided by the random seed
generator. This seed is passed to m (in this case, m = 3) watermark-
ing functions g1, g2, g3, …, gm—these are independent pseudorandom
number functions that assign a score gℓ(xt, rt) (in this case, a 0 or 1) to
any candidate token xt ∈ V.

In the second stage (Fig. 2, bottom), we start by sampling M = 2m
candidate tokens from the LLM distribution pLM(⋅∣x<t) (some tokens may
appear multiple times): these are the initial participants of the m-layer
tournament. We randomly divide these candidates into M/2 pairs, and,
in the first tournament layer, in each pair the token with the higher
score under g1(⋅, rt) is selected, and the other discarded (any ties are
broken randomly). The remaining M/2 tokens are regrouped randomly
into M/4 pairs, and the function g2(⋅, rt) determines the winners for this
second tournament layer. This iterative process continues until one
token emerges as the final winner, which becomes the output token
xt. A formal description of Tournament sampling is given in Algorithm
2 in Methods.

Watermark detection
By design, Tournament sampling selects a token from the LLM distribu-
tion that is likely to score higher under the random watermarking func-
tions g1(⋅, rt), …, gm(⋅, rt). To detect whether a piece of text x = x1, …, xT
is watermarked, we measure how highly x scores with respect to these
functions. Specifically, we compute the mean g-values of the text:

ℓ
ℓ∑ ∑x

mT
g x rScore () =

1
(,).

t

T m

t t
=1 =1

Given the selection of tokens xt based on higher g-values, we expect
watermarked text generally to score higher under this score than unwa-
termarked text.

There are two primary factors that affect the detection performance
of the scoring function. The first is the length of the text x: longer texts
contain more watermarking evidence, and so we have more statistical
certainty when making a decision. The second is the amount of entropy
in the LLM distribution when it generates the watermarked text x. For
example, if the LLM distribution is very low entropy, meaning it almost
always returns the exact same response to the given prompt, then
Tournament sampling cannot choose tokens that score more highly
under the g functions. In short, like other generative watermarks21,
Tournament sampling performs better when there is more entropy in
the LLM distribution, and is less effective when there is less entropy.
In Supplementary Information section H, we provide a theoretical
analysis describing the watermarking strength of a layer of Tournament
sampling as a function of a certain kind of entropy; similar analyses
have been done for other generative watermarks23–25. The entropy of
the LLM distribution itself depends on several factors, including the
model—for example, larger or more advanced models tend to be more
certain and thus lower entropy21, and reinforcement learning from
human feedback can reduce entropy (also known as ‘mode collapse’)26.
Other factors that affect LLM distribution entropy include the prompts,
the temperature and other decoding settings such as top-k and top-p
sampling settings (see ‘The LLM distribution’ in Methods).

Increasing the number of tournament layers m provides additional
watermarking evidence per token, and decreases the variance of
the score in equation (1). This allows SynthID-Text to provide better
detectability than other methods (see ‘Evaluation’). However, detect-
ability does not increase indefinitely with the number of layers. Each
layer of the tournament uses some of the available entropy to embed
a watermark, and the strength of the watermark corresponding to a
layer diminishes deeper into the tournament. For our experiments, we
generally use m = 30 layers unless otherwise stated; see Supplementary
Information section C.1 for full details.

Finally, we note that there are other scoring functions beyond equa-
tion (1); in Supplementary Information section A, we describe several
others, and find that some can improve detection performance.

Preserving the quality of generative text
As previously mentioned, a watermarking scheme can be non-
distortionary, a property relating to quality preservation; however,
the phrase and its variants have been used in the literature to mean
several distinct definitions24,25,27, causing some confusion. In this
work, we resolve the confusion by providing clear definitions of
non-distortion, from weakest to strongest. The weakest version is
single-token non-distortion, which says that, on average over the
random seed rt, the distribution of the output token xt generated by
the watermarking sampling algorithm is equal to the original LLM
distribution pLM(⋅∣x<t) (Fig. 1). Stronger versions of non-distortion
expand this definition to one or more sequences of text, ensuring that
on average the probability of the watermarking scheme generating
a particular text or sequence of texts is the same as for the original
LLM. Full definitions are provided in Supplementary Information
section G.

In Supplementary Information section G.1, we show that when
Tournament sampling is configured with exactly two ‘competitors’
for each match in the tournament (as in the example in Fig. 2), then
Tournament sampling is single-token non-distortionary. Furthermore,
in Supplementary Information section G.2, we show that by applying
repeated context masking27, we can make the scheme non-distortionary
for one or more sequences. Choosing the level of non-distortion
involves a trade-off; weaker levels of non-distortion can reduce text
quality and diversity, whereas stronger levels of non-distortion can
reduce detectability and increase computational complexity (Sup-
plementary Information section G.3). For our experiments, we con-
figure SynthID-Text to be single-sequence non-distortionary; this

durian 1

mango 1

lychee 0

mango 1

durian 0

mango 0

1

0y 0

papaya 0

lychee 0

mango 1

mango 1

lychee 1

mango 0

0

1

p p

l h

g 0

mango 1

lychee 0
mango

1

0
Output
token

… my favourite tropical fruit is

mango
lychee
papaya
durian

1
0
0
1

0.50
0.30
0.15
0.05

Recent context

Vocabularyy pLM Random watermarking functions

0
1
0
0

1
0
1
0

pical fru

LLM probabilities and random watermarking functions

Tournament sampling: over-generation with watermark-based iterative selection

Watermarking key

Random seed

g1: winner

g1 g3g2

g1: tie

g1: tie

g1: tie

g2: tie

g2: winner

g3: winner

C
an

di
da

te
 to

ke
ns

 s
am

pl
ed

 fr
om

 p
LM

Random seed
generator

Fig. 2 | SynthID-Text’s Tournament-based watermarking. Top: to generate a
new token xt, we first score each token in the vocabulary using multiple (in this
case, m = 3) random watermarking functions g1, …, gm. These assign random
values using a random seed, which is generated based on both the recent
context and a watermarking key. Bottom: then, we choose the next token using
a tournament process. First, we sample 2m = 8 (possibly non-unique) tokens
from pLM(⋅∣x<t). These are split into pairs of competing tokens; in each pair, the
highest scoring one (based on g1) is chosen, breaking ties randomly. The
resulting tokens compete in the next layer, where winners are chosen based on
g2, until in the last tournament layer the final winner is selected based on gm:
this becomes the next generated token xt.

Learning-based watermark - Adversarial
Watermarking Transformer: Towards Tracing Text
Provenance with Data Hiding

Adversarial Watermarking Transformer: Towards
Tracing Text Provenance with Data Hiding

Sahar Abdelnabi and Mario Fritz
CISPA Helmholtz Center for Information Security

Abstract—Recent advances in natural language generation
have introduced powerful language models with high-quality
output text. However, this raises concerns about the potential
misuse of such models for malicious purposes. In this paper,
we study natural language watermarking as a defense to help
better mark and trace the provenance of text. We introduce the
Adversarial Watermarking Transformer (AWT) with a jointly
trained encoder-decoder and adversarial training that, given an
input text and a binary message, generates an output text that is
unobtrusively encoded with the given message. We further study
different training and inference strategies to achieve minimal
changes to the semantics and correctness of the input text.

AWT is the first end-to-end model to hide data in text by
automatically learning -without ground truth- word substitutions
along with their locations in order to encode the message.
We empirically show that our model is effective in largely
preserving text utility and decoding the watermark while hiding
its presence against adversaries. Additionally, we demonstrate
that our method is robust against a range of attacks.

I. INTRODUCTION

Recent years have witnessed major achievements in natural
language processing (NLP), generation, and understanding.
This is in part driven by the introduction of attention-based
models (i.e., transformers [1]) that outperformed recurrent or
convolutional neural networks in many language tasks such
as machine translation [1], [2], language understanding [3],
[4], and language generation [5]. In addition, model pre-
training further fueled these advances and it is now a common
practice in NLP [6], [7]; many large-scale models are now pre-
trained on large datasets with either denoising auto-encoding
or language modelling objectives and then fine-tuned on other
NLP downstream tasks [3], [4], [8]–[11].

On the other hand, this raises concerns about the potential
misuse of such powerful models for malicious purposes such
as spreading neural-generated fake news and misinformation.
For example, OpenAI used a staged release to publicize their
GPT-2 language model in order to evaluate the impact and
potential risks [12]. Moreover, Zellers et al. [5] proposed a
generative model called Grover demonstrating that a language
model such as GPT-2 can be trained on news articles and can
consequently generate realistically looking fake news.

These models can generate highly fluent text which some-
times had even higher ratings than human-written text and
fooled human detectors [5], [13], [14]. While it is now
possible to perform automatic detection, it is subject to recent
advances in text generation (e.g., architecture, model size,
and decoding strategies) [5], [13], which could hinder the
automatic detection in the long run. Hence, we seek a more

1010

Input text

Other positions from the

Department of Air included

Air Commodore Plans from

October 1957 to January

1959, and Director General

Plans and Policy from

January to August 1959.

Output text

Input message

1010
Reconstructed

message

Other positions at the

Department of Air included

Air Commodore Plans from

October 1957 to January

1959, and Director General

Plans and Policy from

January to August 1959.

Hiding network

1010

Transformer

Encoder

Revealing network

Transformer

Encoder

Transformer

Decoder

Fig. 1: An overview of our text watermarking solution at
inference time.

sustainable solution that can disambiguate between real and
fake text.

To this end, we aim to perform automatic and unobstructive
data hiding within language towards eventually watermarking
the output of text generation models. Specifically, we envision
black-box access scenarios to the language model APIs [15] or
to services such as text generation and editing-assistance that
could be misused to create misinformation. Watermarking can
then be used to introduce detectable fingerprints in the output
that enable provenance tracing and detection. As deep learning
models are widely deployed in the wild as services, they are
subject to many attacks that only require black-box access
(e.g., [16]–[19]). Thus, it is important to proactively provide
solutions for such potential attacks before their prevalence.

a) Language watermarking: There have been several
attempts to create watermarking methods for natural language,
such as synonym substitutions [20], [21], syntactic tools
(e.g., structural transformation [22]), in addition to language-
specific changes [23]–[25]. However, these previous methods
used fixed rule-based substitutions that required extensive
engineering efforts to design, in addition to human input
and annotations, which hinders the automatic transformation.
Also, the designed rules are limited as they might not apply
to all sentences (e.g., no syntactic transformations can be
applied [22]). Additionally, they introduce large lexical or
style changes to the original text, which is not preferred when
keeping the original state is required (such as the output of
an already well-trained language model). Besides, rule-based
methods could impose restrictions on the use of the language
(e.g., by word masking). Finally, using fixed substitutions can
systematically change the text statistics which, in turn, under-

ar
X

iv
:2

00
9.

03
01

5v
2

 [c
s.C

R
]

29
 M

ar
 2

02
1

