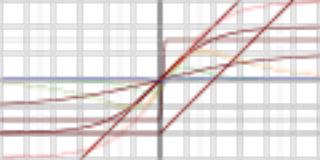


Neural Network Architectures

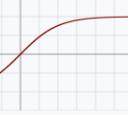
Neil Gong

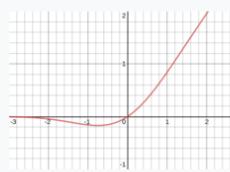
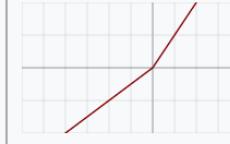
Artificial Neural Networks

- Input/output
- Weight
- Activation function
- Connection pattern



Activation function

Name	Plot	Function, $g(x)$
Identity		x
Binary step		$\begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \geq 0 \end{cases}$
Logistic, sigmoid, or soft step		$\sigma(x) \doteq \frac{1}{1 + e^{-x}}$
Hyperbolic tangent (tanh)		$\tanh(x) \doteq \frac{e^x - e^{-x}}{e^x + e^{-x}}$

Rectified linear unit (ReLU)		$(x)^+ \doteq \begin{cases} 0 & \text{if } x \leq 0 \\ x & \text{if } x > 0 \end{cases} = \max(0, x) = x \mathbf{1}_{x>0}$
Gaussian Error Linear Unit (GELU)		$\frac{1}{2}x \left(1 + \text{erf} \left(\frac{x}{\sqrt{2}} \right) \right) = x \Phi(x)$
Leaky rectified linear unit (Leaky ReLU)		$\begin{cases} 0.01x & \text{if } x \leq 0 \\ x & \text{if } x > 0 \end{cases}$

Source: Wikipedia

Connection patterns

- Fully connected
- Softmax
- Convolution
- Residual
- Transformer

Convolution: a 2-D example

input

0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	0	1	1	1	0	0	0
0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0

output

filter

1	2	1
0	0	0
-1	-2	-1

Convolution: a 2-D example

input

0	1	0	2	0	1	0	0	0	0
0	0	0	0	0	0	1	1	1	0
0	-1	1	-2	1	-1	1	1	1	0
0	1	1	1	1	1	1	1	1	0
0	1	1	1	1	1	1	1	1	0
0	0	1	1	1	1	0	0	0	0
0	0	1	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0

output

-3						

filter

1	2	1
0	0	0
-1	-2	-1

- sliding window
- dot product

Convolution: a 2-D example

input

0	0	1	0	2	0	1	0	0	0	0
0	0	0	0	0	0	0	1	1	1	0
0	1	-1	1	-2	1	-1	1	1	1	0
0	1	1	1	1	1	1	1	1	1	0
0	1	1	1	1	1	1	1	1	1	0
0	0	1	1	1	1	0	0	0	0	0
0	0	1	1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0

output

-3	-4						

filter

1	2	1
0	0	0
-1	-2	-1

- sliding window
- dot product

Convolution: a 2-D example

input

0	0	0	1	0	2	0	1	0	0	0	0
0	0	0	0	0	0	0	0	1	1	0	
0	1	1	-1	1	-2	1	-1	1	1	0	
0	1	1	1	1	1	1	1	1	1	0	
0	1	1	1	1	1	1	1	1	1	0	
0	0	1	1	1	1	0	0	0	0	0	
0	0	1	1	1	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	

output

-3	-4	-4				

filter

1	2	1
0	0	0
-1	-2	-1

- sliding window
- dot product

Convolution: a 2-D example

input

0	0	0	0	1	0	1	0	0	0
0	0	0	0	0	0	1	0	1	0
0	1	1	1	-1	1	-2	1	-1	1
0	1	1	1	1	1	1	1	1	0
0	1	1	1	1	1	1	1	1	0
0	0	1	1	1	0	0	0	0	0
0	0	1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

output

-3	-4	-4	-4			

filter

1	2	1
0	0	0
-1	-2	-1

- sliding window
- dot product

Convolution: a 2-D example

input

0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	0	1	1	1	01	02	01
0	0	1	1	1	00	00	00
0	0	0	0	0	-1	-2	-1

filter

1	2	1
0	0	0
-1	-2	-1

- sliding window
- dot product

output

-3	-4	-4	-4	-4	-3
-3	-4	-4	-3	-1	0
0	0	0	0	0	0
2	1	0	1	3	3
2	1	0	1	3	3
1	3	4	3	1	0

Convolution: a 2-D example

$$y[n, m] = \sum_{i=-r}^r \sum_{j=-r}^r w[i, j] x[n + i, m + j]$$

output map

input map

filter weights

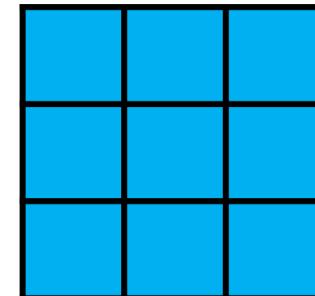
coordinates in a local window

r : kernel radius
kernel size = $2r + 1$

Convolution: padding

input: 8×8 , + pad

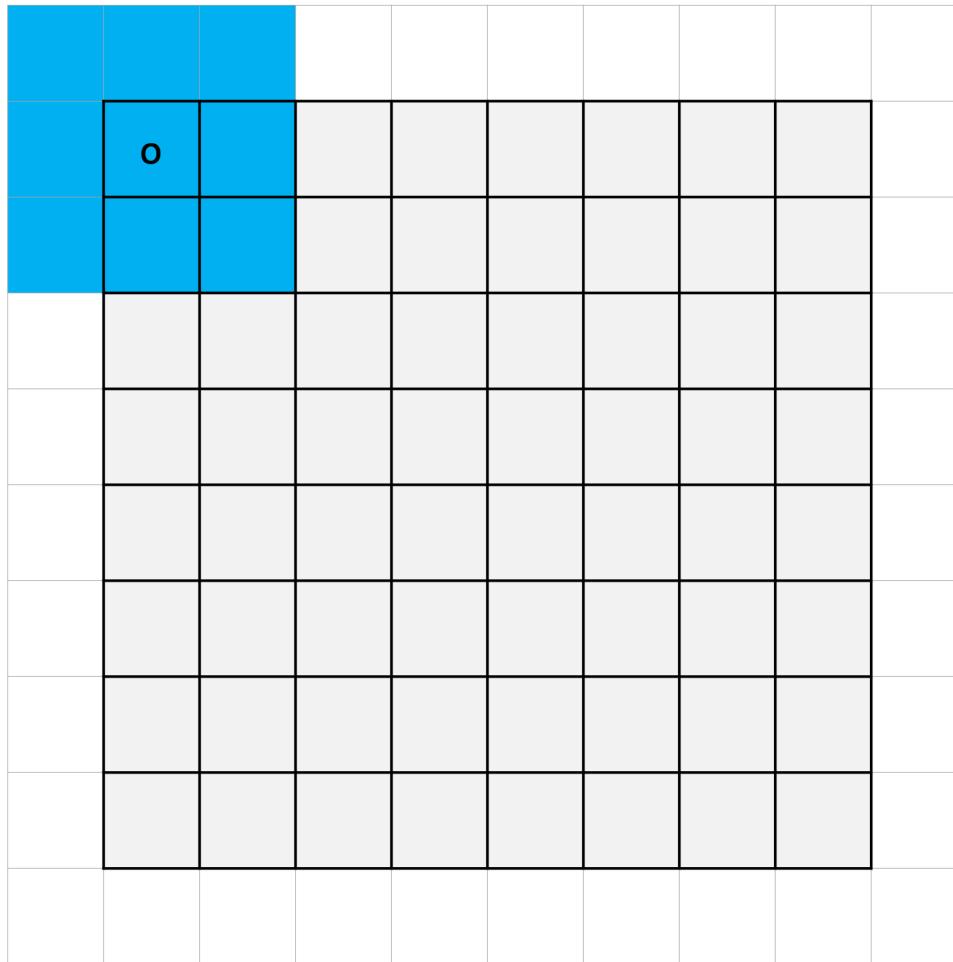
filter



output: $H \times W = 8 \times 8$

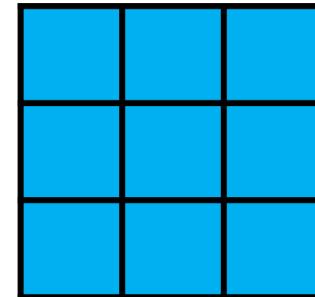
Convolution: stride

input

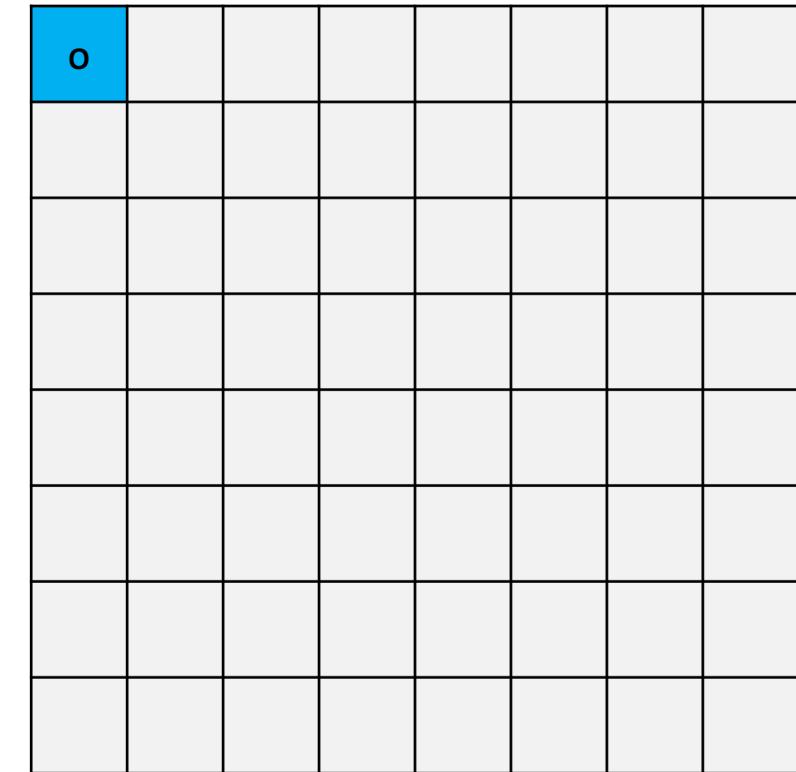


stride = 2

filter

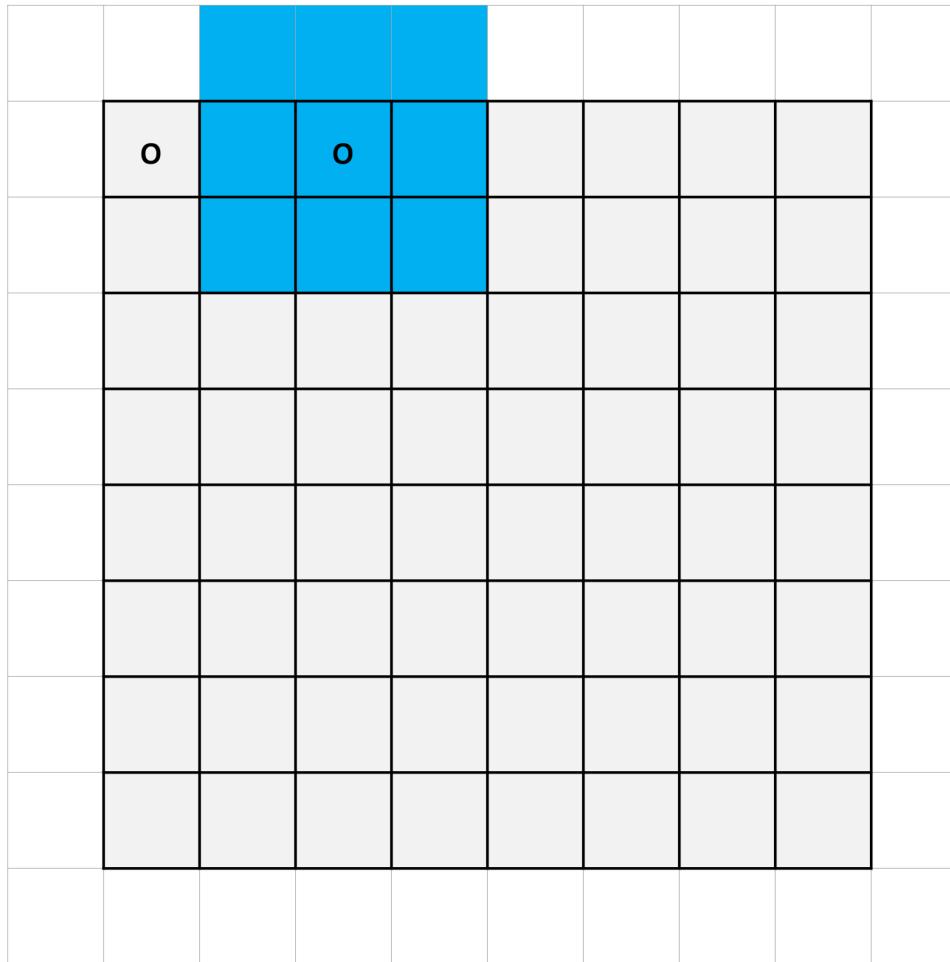


output



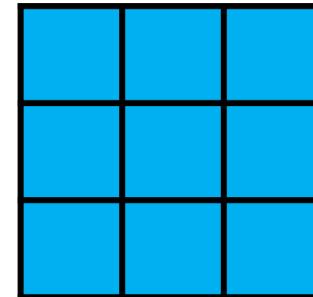
Convolution: stride

input

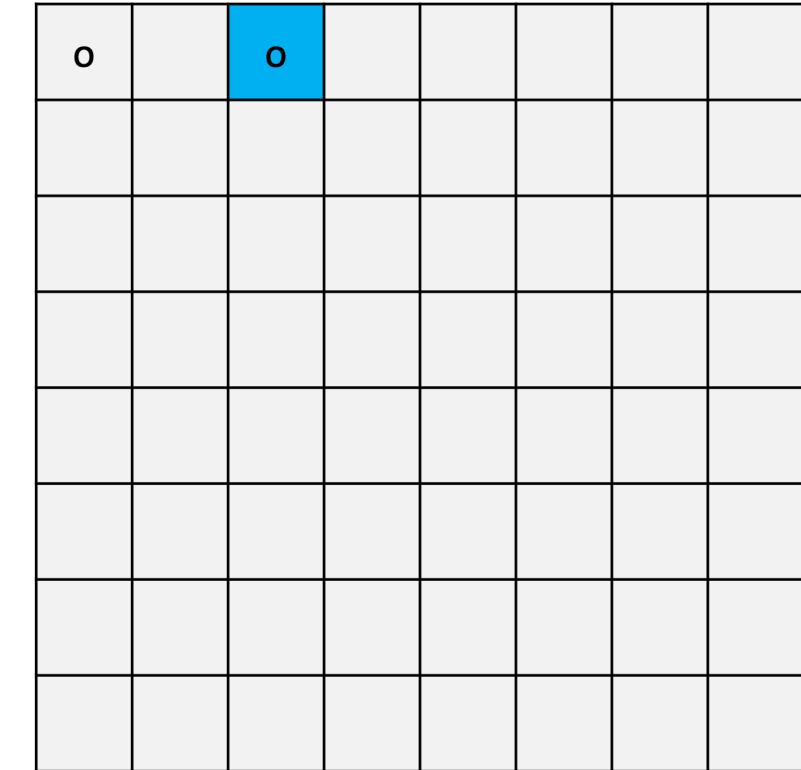


stride = 2

filter



output



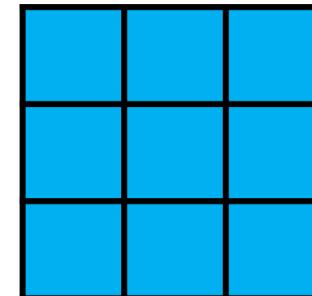
Convolution: stride

input: $H \times W = 8 \times 8$

o		o		o		o		
o		o		o		o		
o		o		o		o		
o		o		o		o		
o		o		o		o		
o		o		o		o		
o		o		o		o		

stride = 2

filter



output: $H \times W = 4 \times 4$

o		o		o		o	
o		o		o		o	
o		o		o		o	
o		o		o		o	

Convolution: stride

input: $H \times W = 8 \times 8$

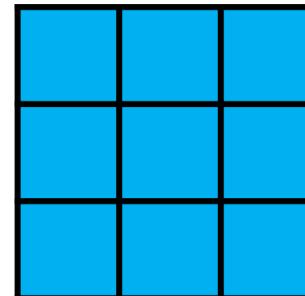
o		o		o		o		
o		o		o		o		
o		o		o		o		
o		o		o		o		

stride = 2

- reduces feature map size
- compress and abstract

output: $H \times W = 4 \times 4$

filter

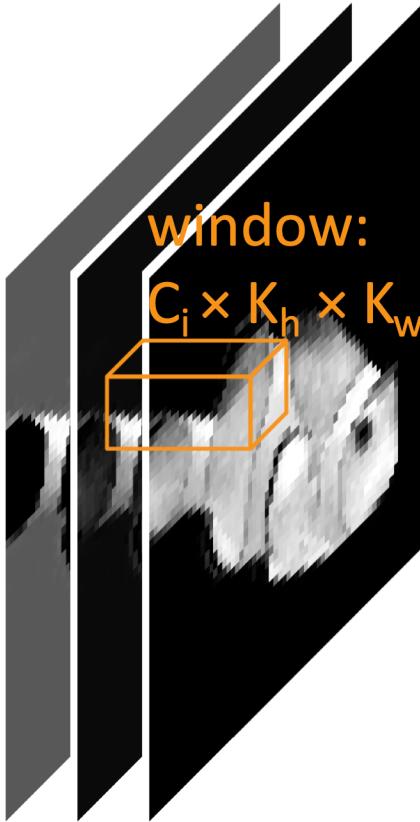


o	o	o	o
o	o	o	o
o	o	o	o
o	o	o	o

$$H_{\text{out}} = \lfloor (H_{\text{in}} + 2\text{pad}_h - K_h) / \text{str} \rfloor + 1$$

*rounding operation depends on libraries

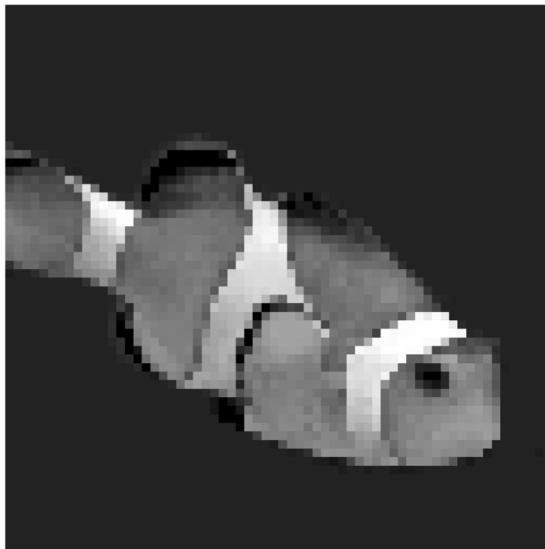
Convolution: Multi-channel inputs



$$\text{window: } C_i \times K_h \times K_w \quad * \quad \text{filter: } C_i \times K_h \times K_w =$$

The diagram shows the convolution operation. On the left is the input window, a 3x3x3 volume of pixels. To its right is the filter, represented as a 3x3x3 cube with a grid inside. The multiplication symbol (*) indicates the convolution operation, and the equals sign (=) indicates the result. The result is shown on the right.

Convolution: Multi-channel outputs

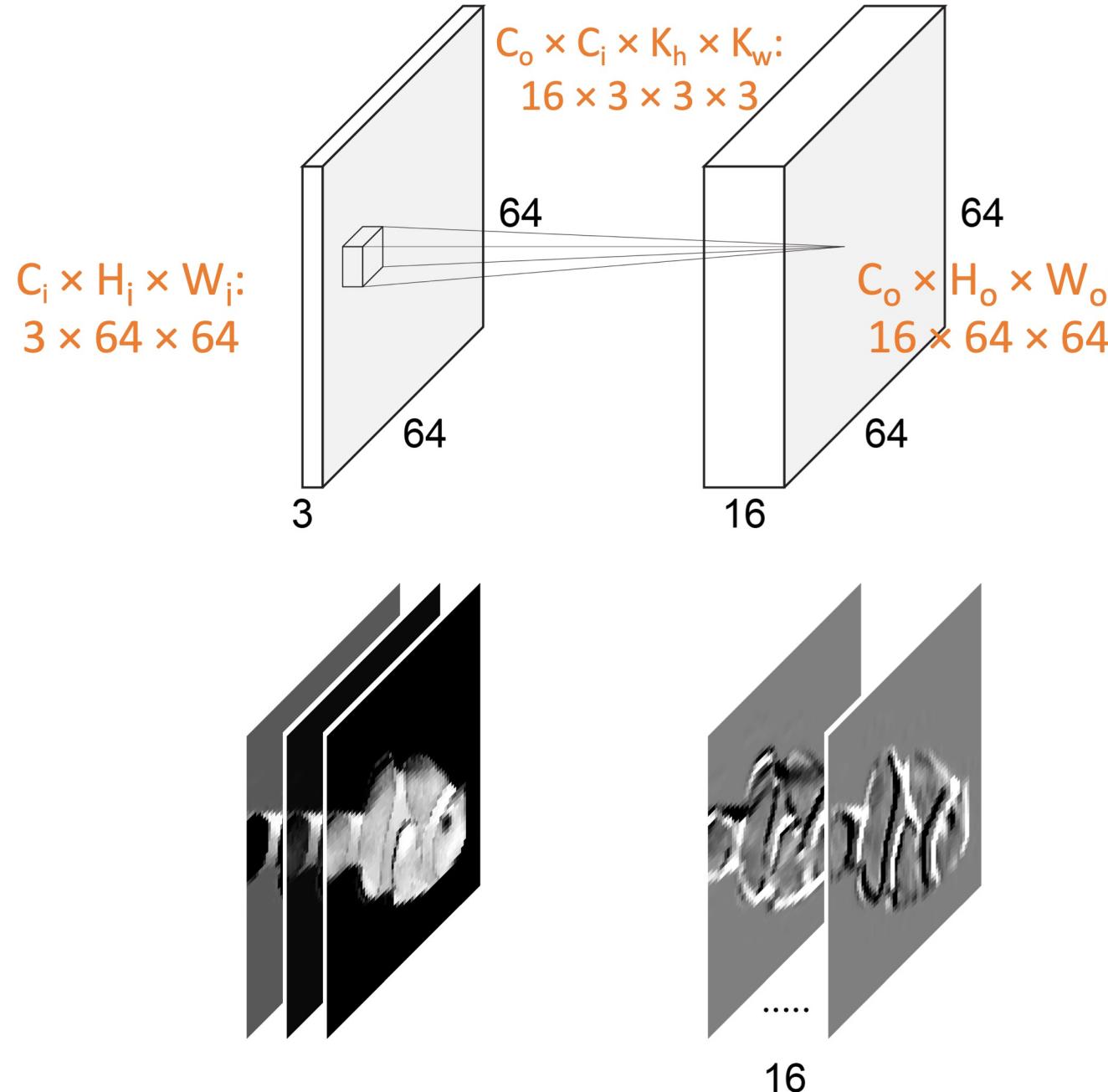


$$\begin{matrix} * & \begin{array}{|c|c|c|} \hline 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -2 & -1 \\ \hline \end{array} & = \end{matrix}$$

one filter, one feature

$$\begin{matrix} * & \begin{array}{|c|c|c|} \hline 1 & 0 & -1 \\ \hline 2 & 0 & -2 \\ \hline 1 & 0 & -1 \\ \hline \end{array} & = \end{matrix}$$

Convolution: tensor views

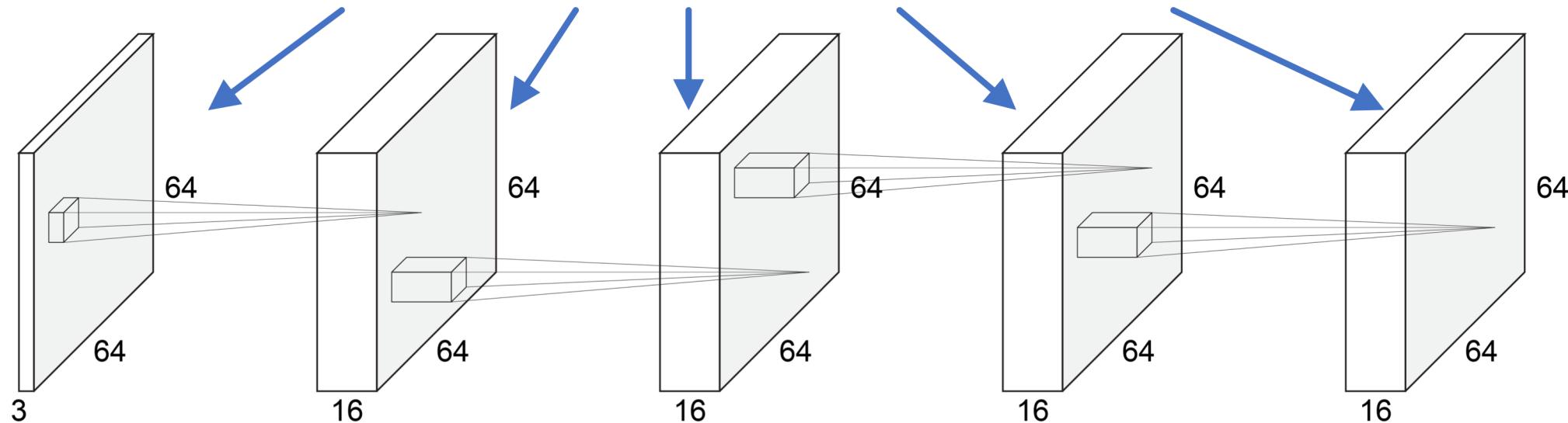
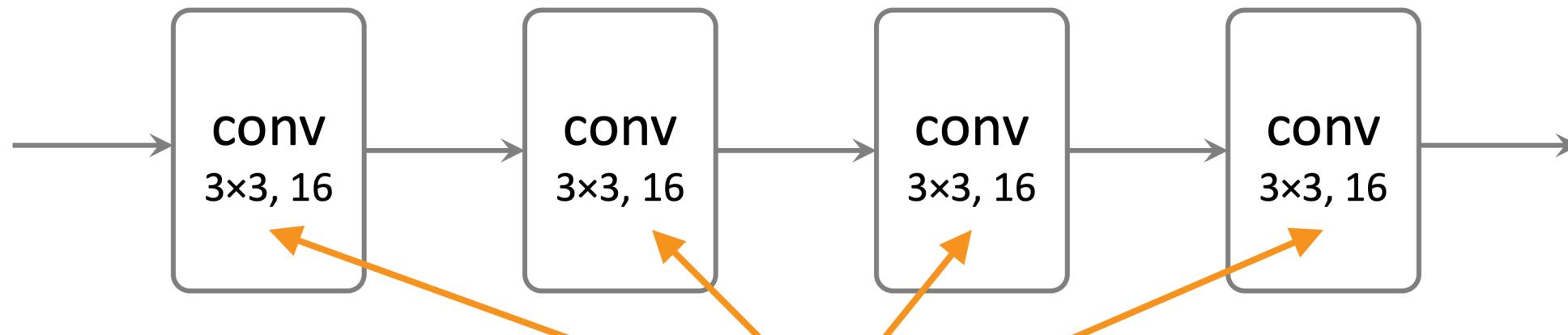


- **Tensor:** high-dimension array
- **feature maps**
 - 3-D tensor: $C \times H \times W$
 - C : channels
 - H : height
 - W : width
- **filters**
 - 4-D tensor: $C_o \times C_i \times K_h \times K_w$
 - C_o : output channels
 - C_i : input channels
 - K_h, K_w : filter height, width

Composing basic operations

two ways of showing
neural nets

these are activations (features, embeddings, tensors ...)



these are operations (functions, transforms, layers ...)

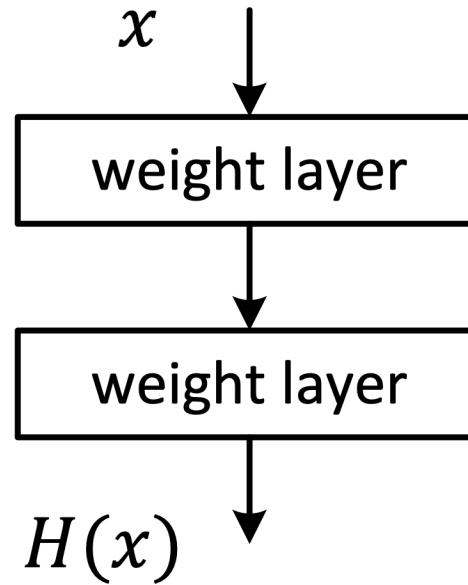
Deep Residual Learning

- Deep Learning gets way deeper
- simple component: identity shortcut
- enable networks w/ hundreds of layers

Compose simple modules into complex functions

Deep Residual Learning

a subnet in
a deep net

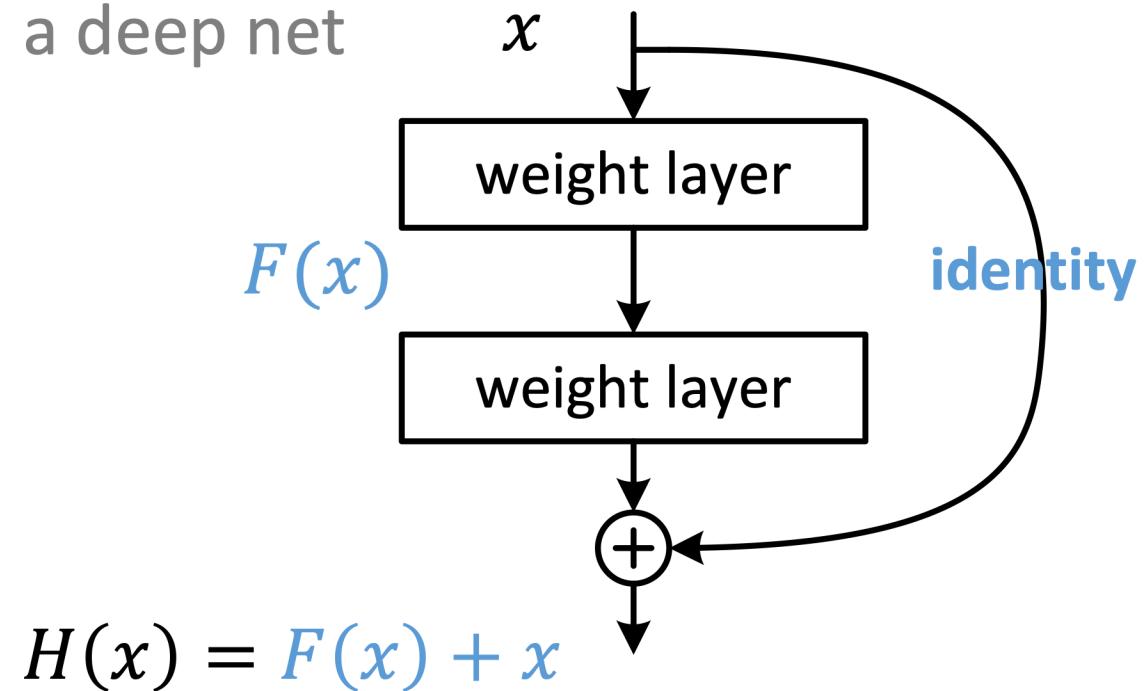


classical network

- $H(x)$: desired function to be fit by a subnet
- let weight layers fit $H(x)$

Deep Residual Learning

a subnet in
a deep net

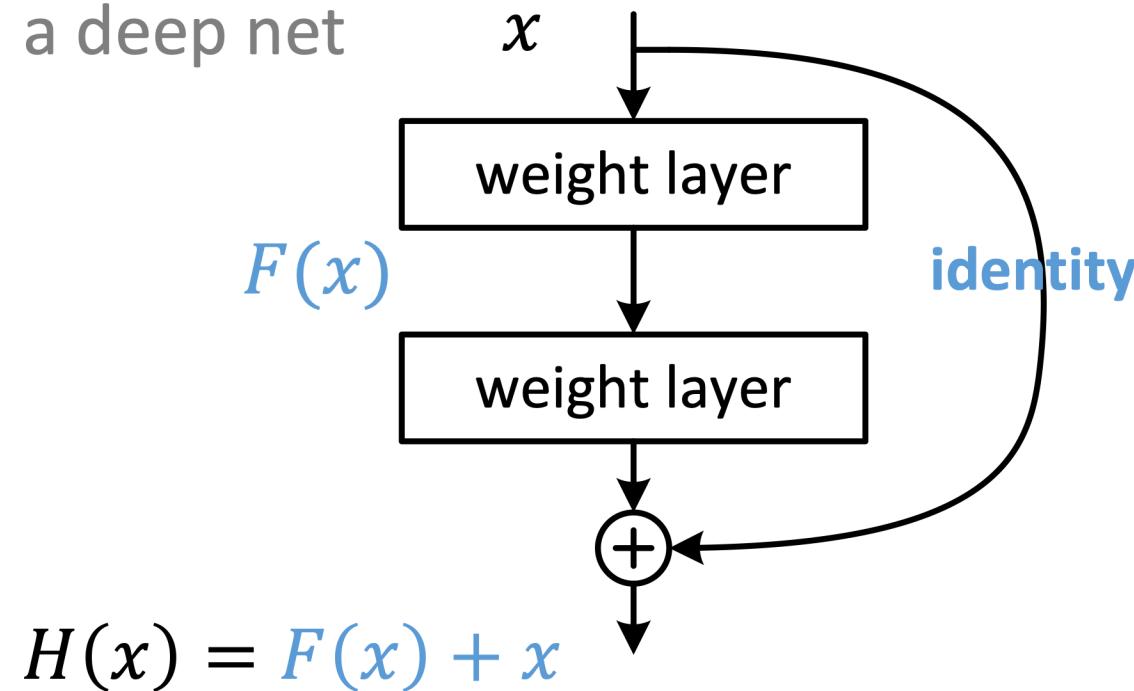


residual block

- $H(x)$: desired function to be fit by a subnet
- ~~let weight layers fit $H(x)$~~
- let weight layers fit $F(x)$
- set $H(x) = F(x) + x$

Deep Residual Learning

a subnet in
a deep net



residual block

- $F(x)$: residual function
- if $H(x) = \text{identity}$ is near-optimal
 - push weights to small
 - encourage small changes
- initialization
 - small or zero weights

Residual Networks (ResNet)

Building very deep nets:

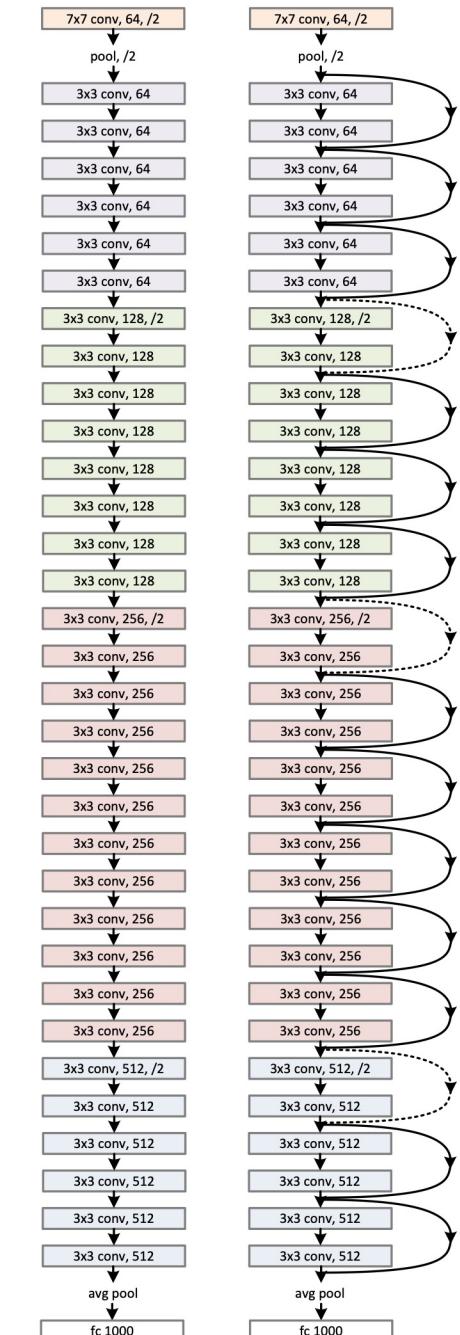
- add **identity connections** to vanilla nets
(a.k.a. skip/shortcut/residual connections)

or:

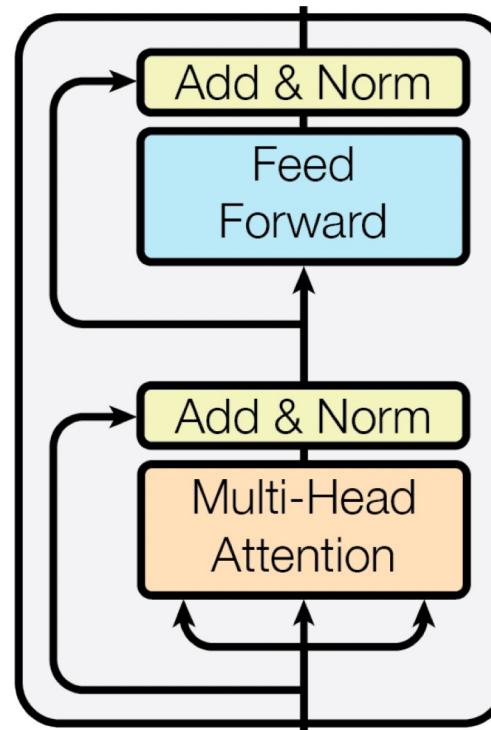
- stack many **residual blocks**

Residual Blocks:

- new generic modules for neural nets
- design blocks and compose them

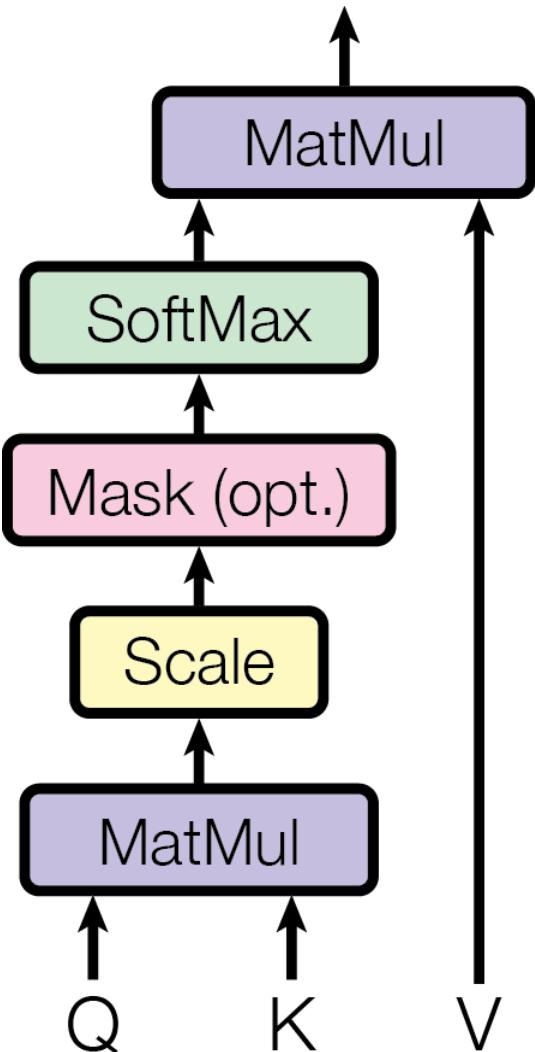


Residual Block: Transformer



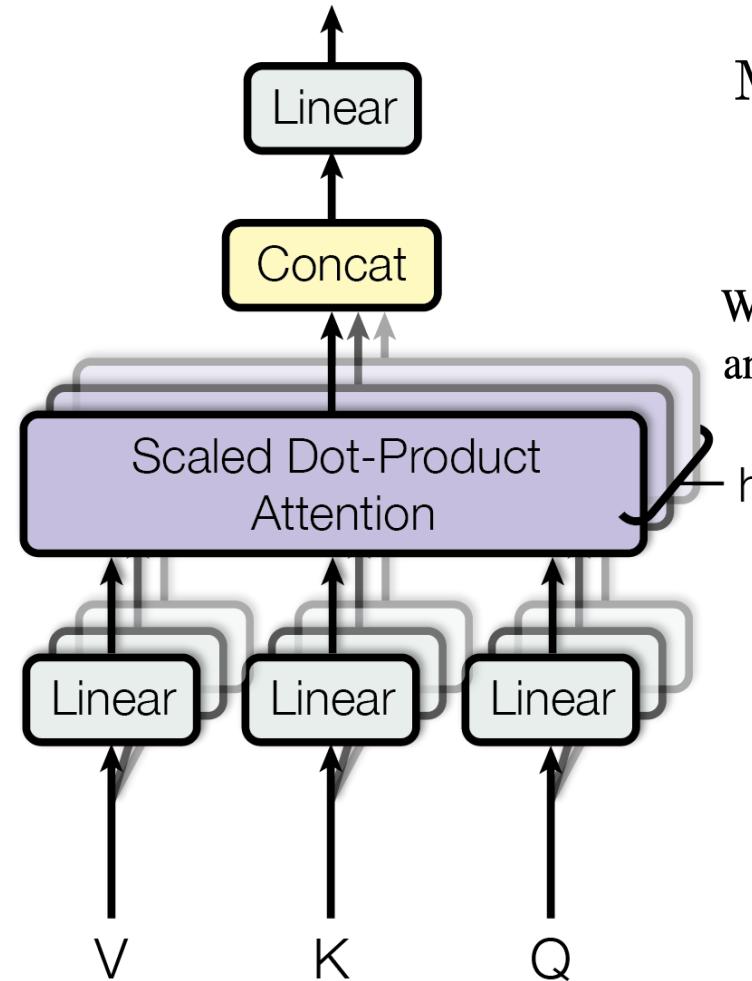
A Transformer Block has two Residual Blocks.

Scaled Dot-Product Attention



$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

Multi-Head Attention



$$\text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \dots, \text{head}_h)W^O$$
$$\text{where } \text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)$$

Where the projections are parameter matrices $W_i^Q \in \mathbb{R}^{d_{\text{model}} \times d_k}$, $W_i^K \in \mathbb{R}^{d_{\text{model}} \times d_k}$, $W_i^V \in \mathbb{R}^{d_{\text{model}} \times d_v}$ and $W^O \in \mathbb{R}^{hd_v \times d_{\text{model}}}$.

Position-wise feed-forward network

$$\text{FFN}(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

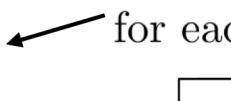
One last detail: layer normalization

Main idea: batch normalization is very helpful, but hard to use with sequence models

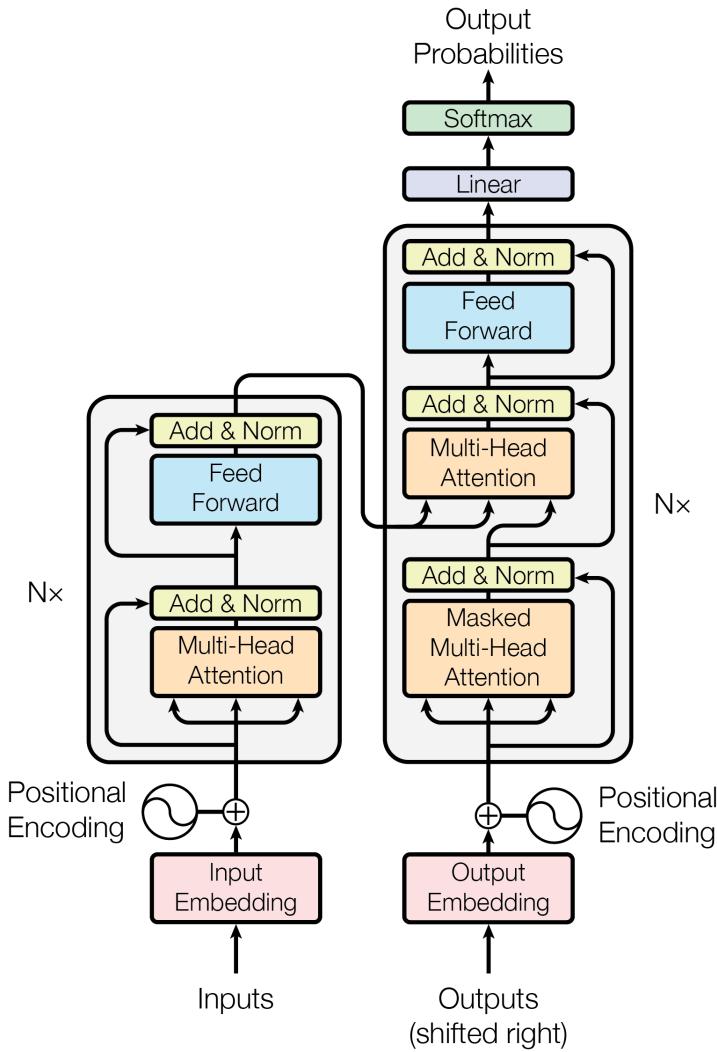
Sequences are different lengths, makes normalizing across the batch hard

Sequences can be very long, so we sometimes have small batches

Simple solution: “layer normalization” – like batch norm, but not across the batch

<p>Batch norm</p> <p>$d\text{-dim}$</p> $\mu = \frac{1}{B} \sum_{i=1}^B a_i$ $\sigma = \sqrt{\frac{1}{B} \sum_{i=1}^B (a_i - \mu)^2}$ $\bar{a}_i = \frac{a_i - \mu}{\sigma} \gamma + \beta$	<p>$d\text{-dimensional vectors}$</p> <p>for each sample in batch</p> 	<p>Layer norm</p> <p>a</p> <p>1-dim</p> $\mu = \frac{1}{d} \sum_{i=1}^d a_j$ $\sigma = \sqrt{\frac{1}{d} \sum_{i=1}^d (a_j - \mu)^2}$ $\bar{a} = \frac{a - \mu}{\sigma} \gamma + \beta$
---	---	---

Transformer architecture



Positional encoding: sin/cos

Naïve positional encoding: just append t to the input

$$\bar{x}_t = \begin{bmatrix} x_t \\ t \end{bmatrix}$$

This is not a great idea, because **absolute** position is less important than **relative** position

I walk my dog every day

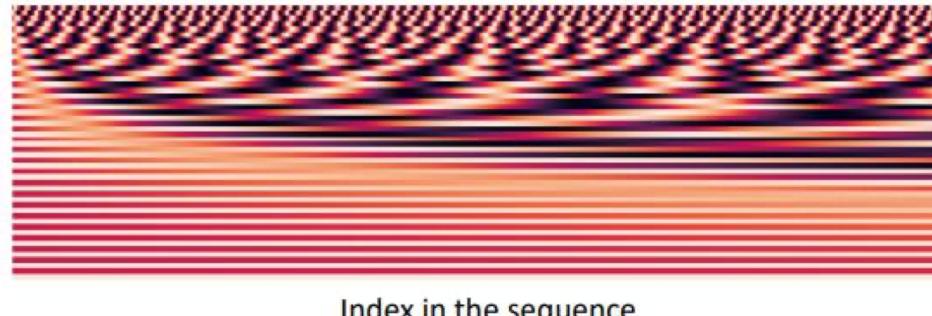
every single day I walk my dog

The fact that “my dog” is right after “I walk” is the important part, not its absolute position

we want to represent **position** in a way that tokens with similar **relative** position have similar **positional encoding**

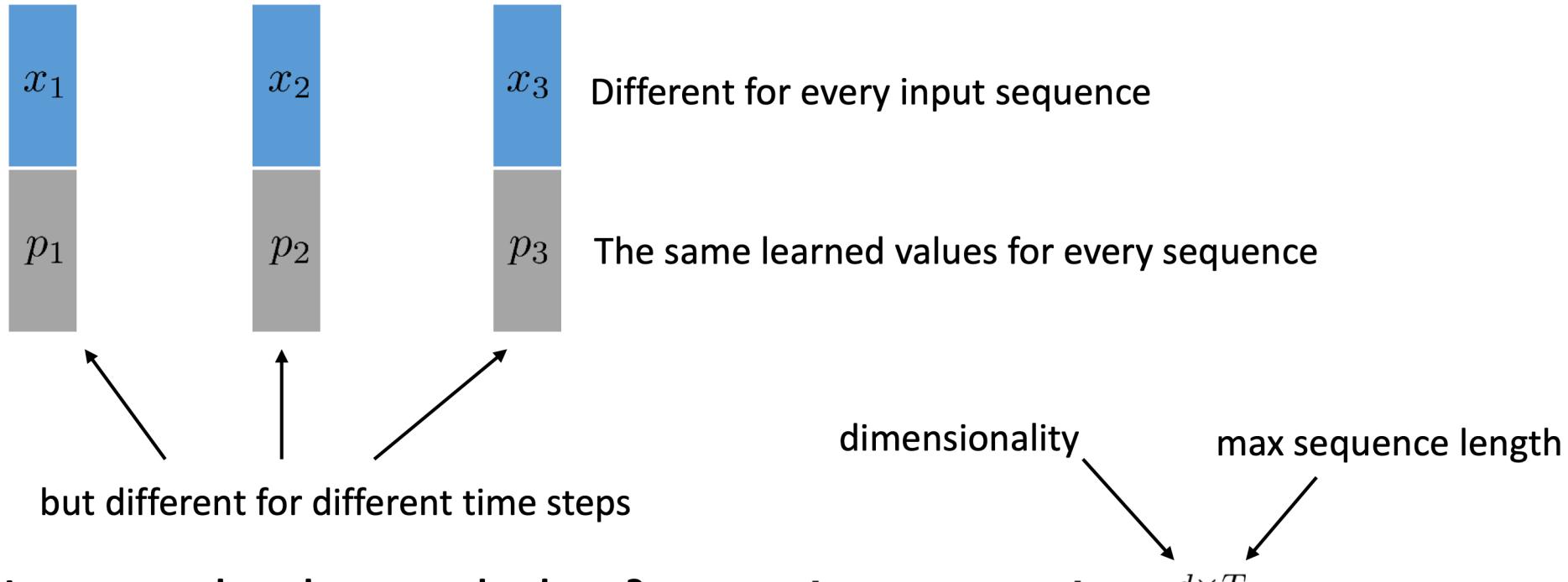
$$p_t = \begin{bmatrix} \sin(t/10000^{2*1/d}) \\ \cos(t/10000^{2*1/d}) \\ \sin(t/10000^{2*2/d}) \\ \cos(t/10000^{2*2/d}) \\ \dots \\ \sin(t/10000^{2*\frac{d}{2}/d}) \\ \cos(t/10000^{2*\frac{d}{2}/d}) \end{bmatrix}$$

dimensionality of positional encoding



Positional encoding: learned

Another idea: just learn a positional encoding



+ more flexible (and perhaps more optimal) than sin/cos encoding

+ a bit more complex, need to pick a max sequence length (and can't generalize beyond it)

Vision Transformer (ViT)

