Neural Network Architectures

Neil Gong

Slides adapted from Kaiming He and Sergey Levine

Artificial Neural Networks

* Input/output
* Weight
* Activation function

e Connection pattern

Activation function

Name ¢ Plot Function, g(z)
Identity / iy
Binary ste U g <0
ySP T 1 ifz>0
Logistic, 1
sigmoid,or | _— =
g () L4k @™
soft step
Hyperbolic o _ o
tangent tanh(z) =
ew _I_ e—JJ
(tanh)

Source: Wikipedia

L1

Rectified ()t 2 0 ifx<O0
linear unit 5 x ifz>0
(ReLU) = max(0,z) = z1,-¢
Gaussian 1
T

Error Linear — (1 + erf (—))

. 2 V2
Unit B <I>()
(GELU) — e
Leaky
rectified .
. . 0.0z ifz<0
linear unit .

x ifz >0

(Leaky
ReLU)

Connection patterns

* Fully connected
e Softmax

* Convolution

* Residual

* Transformer

Convolution: a 2-D example

input output
0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 fllter
0 1 1 1 1 1 1 0 1 2 1
0 1 1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 1 0 11-21| -1

Convolution: a 2-D example

input output
01 02 01 0 0 0 0 0
00 00 00 0 0 1 1 0 f”ter 3
Q|2 | 2|t 2] O 1121
0 1 1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 1 0 11-21| -1

4)

* sliding window

* dot product

- J

Convolution: a 2-D example

input output
0 01 02 01 0 0 0 0
0 00 00 00 0 1 1 0 fl |ter 3 4
O Lalliol|1qlfr | 2| 2|0 11211
0 1 1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 1 0 11-21| -1

4)

* sliding window

* dot product

- J

Convolution: a 2-D example

input output
0 0 01 02 01 0 0 0
0 0 00 00 00 1 1 0 fl |ter 3 4 4
o | 1 |[1q/f2offLq([2 | 2| O 11211
0 1 1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 1 0 11-21| -1

4)

* sliding window

* dot product

- J

Convolution: a 2-D example

input output
0 0 0 01 02 01 0 0
°1°1°%1%I[%]||%]]|*|° filter 3| 4| 4|4
N I E R 112 (1
0 1 1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 1 0 11-21| -1

4)

* sliding window

* dot product

- J

Convolution: a 2-D example

input
0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 fllter
0 1 1 1 1 1 1 0 1 2 1
0 1 1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 1 0 11-21| -1
0 0 1 1 1 01 02 01
I e | Y I Y sliding window
o [o] o|o]o|[eq]Tealfeq]]l.

-

dot product

~

Convolution: a 2-D example

iInput map coordinates in
filter welghts a local window

/ —/ / / \
y[n, m] Z wli,jlxIn+i,m+j]

/ l=—71]——r
N \ /

output map r: kernel radius
kernel size=2r +1

Convolution: padding
input: 8 x 8, + pad

0o 0 0 0 0 0 0 output: HxW =8x 8

: ||
° filter

0 0

0 0

0 0

0 0

0 0

0 0

Convolution: stride

input

stride = 2

filter

output

Convolution: stride
input

'

stride = 2

filter

output

Convolution: stride
input: Hx W=8x38
output: HxW =4 x4

(o) (o) (o) (o)

(o) (o) (o) (o)
filter

(o) (o) (o) (o)
(o) (o) (o) (o)

(o) (o) (o) (o)
(o) (o) (o) (o)

(o) (o) (o) (o)
(o) (o) (o) (o)

stride = 2

Convolution: stride
input: Hx W=8x38

(o) (o) (o) (o)
(o) (o) (o) (o)
(o) (o) (o) (o)
(o) (o) (o) (o)

stride = 2

filter

* reduces feature map size
e compress and abstract

output: HxW =4 x4

H,.. = |(H;, + 2pad,— K,) / str|+ 1

Convolution: Multi-channel inputs

Convolution: Multi-channel outputs

Convolution: tensor views

Co x G x Ky x K,: * Tensor: high-dimension array
16 x3x3x3
64 | 64 * feature maps
/?
Cix H; x W;: - Co X]Ho x Wo: e 3-Dtensor: CxHx W
3x64x64 paasika C: channels
64 * H: height
16 e W: width

 filters
* 4-D tensor: C, x C;x K, x K,
* C,: output channels
e C:input channels
* K, K,: filter height, width

Composing basic operations

these are activations (features, embeddings, tensors ...)

N

1 |
64 64
3 16
____,| conv .| conv
3x3, 16 3x3, 16

!

N

two ways of showing
neural nets

D les— | | 64 64
N - —————
64 64 64
16 16 16
.| conv J conv |
3x3, 16 3x3, 16
Y A \ J

- o | WAS WINNING
Deep Residual Learning IMAGENET

 Deep Learning gets way deeper
* simple component: identity shortcut
* enable networks w/ hundreds of layers

Compose simple modules into complex functions

UNTILA
DEEPER MODEL
CAME ALONG

Deep Residual Learning

classical network

* H(x): desired function to be fit by
a subnet

a subnet in
a deep net X l

weight layer

l * let weight layers fit H(x)

weight layer

H(x) l

Deep Residual Learning

a subnet in
a deep net

H(x)

X

weight layer

|

weight layer

block

H (x): desired function to be fit by
a subnet

| bt T

let weight layers fit F (x)

set H(x) = F(x) +x

Deep Residual Learning
block

a subnet in
 F(x):residual function

a deep net X

weight layer

|

weight layer

* if H(x) = identity is near-optimal
 push weights to small
 encourage small changes

* initialization
H(x) = * small or zero weights

Residual Networks (ResNet)

Building very deep nets:

 addidentity connections to vanilla nets
(a.k.a. skip/shortcut/residual connections)

or:
e stack many residual blocks

Residual Blocks:
* new generic modules for neural nets
* design blocks and compose them

7x7 conv, 64, /2

7x7 conv, 64, /2 I

pool, /2 pool, /2
3x3 conv, 64 3x3 conv, 64
3x3 conv, 64 3x3 conv, 64
3x3 conv, 64 3x3 conv, 64
3x3 conv, 64 3x3 conv, 64
3x3 conv, 64 3x3 conv, 64
3x3 conv, 64 3x3 conv, 64

3x3 conv, 128, /2

3x3cony, 128,/2 |

v

3x3 conv, 128

v y

3x3 conv, 128

3x3 convy, 128

v

v

3x3 conv, 128

3x3 convy, 128

3x3 conv, 128

3x3 cony, 128

v

v

3x3 conv, 128

3x3 convy, 128

3x3 conv, 128

3x3 conv, 128

v

v

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256, /2|

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

v
3x3 conv, 256 3x3 conv, 256
3x3 conv, 256 3x3 conv, 256

v

3x3 conv, 512, /2

3x3cony, 512, /2 |

3x3 conv, 512

v

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

v

3x3 conv, 512

3x3 convy, 512

3x3 conv, 512

3x3 convy, 512

\
avg pool avg pool
[fc 1000 | [fc 1000 |

Residual Block: Transformer

4 h
~—>| Add & Norm

Feed
Forward
L 4

|
~—> Add & Norm

Multi-Head
Attention

A1

G |
.] J

A Transformer Block has two Residual Blocks.

Scaled Dot-Product Attention

QK"

Attention(Q, K, V) = softmax(
Vdg

14

Multi-Head Attention

|

Linear

]

Concat]

It

MultiHead(Q, K, V) = Concat(heady, ..., heady,)W ©°
where head; = Attention(QWiQ, KWHX VW)

Where the projections are parameter matrices W° € Rimiaxdk WK ¢ Rdnotaxdi [V ¢ Rmowix do
and WO € Rdv X dmodet,

Scaled Dot-Product
Attention

2

ﬂ

11

Kl

Lmear

Linear

P

Lmear

L

Position-wise feed-forward network

FFN(:E) — maX(O, xWq + bl)WQ + bo

One last detail: layer normalization

Main idea: batch normalization is very helpful, but hard to use with sequence models
Sequences are different lengths, makes normalizing across the batch hard

Sequences can be very long, so we sometimes have small batches

Simple solution: “layer normalization” — like batch norm, but not across the batch

Batch norm d-dimensional vectors Layer norm
d-di ai, az ap " lor cach sample in batch different dimensions of a
-dim) yet
\4 1 = 1 = 1 d / 1 d
— . 2 _
MZEZCM 0= EZ(% /) ,u—aZaj o = y (aj_,u)z
i=1 i=1 / i=1 i—1
I-dim
a; — a —
—t a="ty+p

a; = v+ 0B
o

Transformer architecture

Output
Probabilities
r
Add & Norm
Feed
Forward
e] A | Add &.Norm z
Aol A Bl Mutt-Head
Feed Attention
Forward 7 Nx
—]
Nix Add & Norm
/—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At 4 1t
] J U e
Positional D @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Positional encoding: sin/cos

Naive positional encoding: just append ¢ to the input Ty = [xtt]

This is not a great idea, because absolute position is less important than relative position

| walk my dog every day every single day | walk my dog The fact that “my dog” is right after “I walk” is

U u the important part, not its absolute position

we want to represent position in a way that tokens with similar relative position have similar positional encoding

© sin(¢/100002+1/4) T : AELIEI T
cos(t/10000**/¢) | dimensionality & = T
sin(t/10000°°2/9) | ¢ positional & "

py = | cos(t/10000%*2/%) encoding 5 —————
sin(t/lOOOOQ*%/d) Index in the sequence

| cos(t/10000%*2/4) |

Positional encoding: learned

Another idea: just learn a positional encoding

I I I Different for every input sequence

b1 P2 P3 The same learned values for every sequence
\ X / dimensionality max sequence length
but different for different time steps /
How many values do we needtolearn? P — [p; po, ..., pr] € R¥*T

+ a bit more complex, need to pick a max sequence length (and can’t generalize beyond it)

Vision Transformer (ViT)

Class

Bird MLP
Ball [
Car Head \

Transformer Encoder

otz - 69 0) @) 6) B)60 6) 6 @ﬁ

* Extra learnable
[class] embedding Linear Projection of Flattened Patches

2

Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.” ICLR 2021.

