

ECE 590: Generative AI: Foundations, Applications, and Safety

Neil Gong

Instructor

- Neil Gong
- neil.gong@duke.edu
- Research area
 - AI and security
- Office hour
 - Time: Wed. 11:00am – 11:50am
 - Location: 413 Wilkinson Building
- Teaching assistant
 - Reachal Wang, reachal.wang@duke.edu
 - Jason Wang, xilong.wang@duke.edu

Course overview

- Foundations of GenAI
 - Transformers, pre-training, post-training, LLM agent, diffusion model, etc.
- Applications and Security/Safety of GenAI
 - Prompt injection, detecting AI-generated content, safety and jailbreaking, data-use auditing, etc.
- Course webpage:
<https://ece590-genai.github.io/>

Goal of this class

- State-of-the-art literature on GenAI foundations and security/safety
- Get prepared to apply and research GenAI

Class format

- Read papers
 - Write comments and send to ecegenerativeai@gmail.com
 - Deadline: Sunday and Tuesday 11:59pm
 - Send your comments to all papers in a single email thread
 - Comment
 - One paragraph of summary of each assigned paper
 - Three or more strengths
 - Three or more weaknesses
 - Disclosure of AI use
- Lead a lecture
 - Forming a group of at most 4 students
 - A group sends three preferred dates to ecegenerativeai@gmail.com by 11:59pm, 01/25
- Participate in class
- One class project
 - Can be a group of at most 4 students
 - Your research project can be class project
 - 02/01: project proposal due.
 - 03/15: milestone report due.
 - 04/13, 04/15: project presentation.
 - 04/26: final project report due.

Lead a lecture

- Why lead a lecture
 - Understanding a topic better after teaching others about it
- Like how I give a lecture
- May read multiple papers on the selected topic
 - E.g., each group member leads discussion on one paper
- 75 mins for a lecture!
- Use whiteboard/blackboard if possible
- Be interactive

An example class project

- Problem: Detecting AI-generated images
- Solution: watermark
 - E.g., start from a watermarking method and optimize it to enhance its robustness, efficiency, and/or image quality
- Proposal abstract: one paragraph to describe the problem and potential solution.

Project report template

- Abstract
- Introduction
- Related work (can also be moved to be after empirical evaluation)
- Problem definition
- Method
- Theoretical evaluation (if any)
- Empirical evaluation
- Conclusion

Grading policy

- 50% project
- 25% reading assignment
- 10% class participation
- 15% class presentation

Course structure

- Part I: LLM
 - Foundations: transformers, pre-training, post-training, prompt engineering, LLM agent
 - Security/Safety: prompt injection, jailbreak and safety guardrails, detecting AI-generated text and robustness, and data-use auditing
- Part II: Image generation
 - Foundations: representation learning, diffusion model
 - Security/Safety: guardrails, jailbreak attacks, detecting AI-generated images, and robustness of detectors
- Part III: other modalities
 - Audio and video generation and security/safety issues